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In atomic and molecular physics, the Pöschl-Teller potential and its modified form (hyperbolic Pöschl-Teller potential) are
particularly significant potentials. It is of great importance to study the Schrödinger equation with those potentials. In this
paper, we further extend the hyperbolic Pöschl-Teller potential through generalizing the superpotential of that potential of the
form Atanh (αx)-Bcoth (αx) to the more general form -Atanh (npx)-Bcoth (mpx). First, we introduce briefly the shape
invariance and the potential algebra in supersymmetric quantum mechanics. Second, we derive three additive shape
invariances, which are related to parameters A and B of the partner potentials with the generalized superpotential, and discuss
the eigenfunctions and eigenvalues in detail. Although the superpotential has two parameters, those shape invariances still
belong to the one-parameter form. The reason is that there is always a constraint relationship between A and B in the additive
shape invariance of the partner potentials. Third, through the potential algebra approach, we obtain the relevant shape
invariance and calculate the corresponding eigenvalue of the Schrödinger equation with the potential of the generalized
superpotential. The calculation shows that the algebraic form shape invariance of the partner potentials with that
superpotential is anastomotic to the above. Last, we make a summary and outlook.

1. Introduction

Although quantum mechanics has received brilliant achieve-
ments in physics, it still faces several unsolved inconsistencies
[1]. Matrix mechanics and wave mechanics are two traditional
methods for solving the Schrödinger equation [2]. However,
bothmethods are difficult to use and are unsuitable for observ-
ing physical images. Therefore, it is very important to find a
new method of solving the Schrödinger equation. Supersym-
metric quantum mechanics (SUSYQM), developed based on
supersymmetric field theory, provides a new method for solv-
ing the Schrödinger equation [3–6]. Supersymmetric field the-
ory unifies the anticommutation and commutation relations
between operators into a closed algebra and links the fermions
and bosons by specific transformation [7]. To avoid the degen-
eration of the fermion spectrum and boson spectrum, the
system must have supersymmetric spontaneous breaking.
Witten proposed the quantum mechanical supersymmetric
“toy” model to solve the breaking problem in field theory

[7]. In this model, the Schrödinger equation with exactly solv-
able potential is not only exactly solvable, but also the physical
image is clear. Therefore, SUSYQM has developed rapidly.
Further research also shows that the factorization method of
solvable models can incorporate into the theoretical frame-
work of SUSYQM, and can be widely used in atomic, molecu-
lar physics, and condensed matter physics. Therefore, it is of
great significance to further study and expand the solvable
potentials based on SUSYQM.

Shape invariance study gives us a powerful method to
solve the Schrödinger equation more easily [8]. The shape
invariance of the partner potential can determine the energy
spectrum and eigenfunction of Hamiltonian without solving
the Schrödinger equation. In addition, the potential algebraic
approach also is a powerful tool in SUSYQM. Potential algebra
can also help us get the energy spectrum and eigenfunction of
Hamiltonian, even obtain the scattering amplitude and spec-
trum [9]. In the 7.2 section of the reference [10], we can learn
that the two approaches are essentially equivalent.
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In atomic and molecular physics, the trigonometric
Pöschl-Teller potential and its modified form (hyperbolic
Pöschl-Teller) are significant potentials and widely used
[11, 12]. Further generalizing the hyperbolic Pöschl-Teller
potential is undoubtedly essential. In recent years, many
scholars have made extensive studies on the hyperbolic
potential from different perspectives [12–14]. Although they
have studied based on SUSYQM, they only give a form of
shape invariance. The reason is that they do not notice that
this potential has two-parameter characteristics.

In this paper, based on SUSYQM, we study the shape
invariance of the Schrödinger equation with the generalized
hyperbolic Pöschl-Teller potential. In Section 2, we briefly
introduce SUSYQM. In Section 3, according to the superpo-
tential of the hyperbolic Pöschl-Teller potential (Pöschl-
Teller II potential), our groupmakes amore general extension
(to generalize the superpotential of that potential of the form
Atanh (αx)-Bcoth (αx) [15] to the form -Atanh (npx)-Bcoth
(mpx)) and focus on the parameters A and B. Then, we derive
three additive shape invariances of partner potentials with the
generalized potential. Further, we research the coefficient-
dependent eigenfunctions and eigenvalues in terms of the
various value ranges of A and B deeply. In Section 4, we use
the potential algebra method, and obtain the shape invari-
ances of potential algebraic forms, which are anastomotic to
those of the partner potentials. In the last section, we make a
summary and outlook.

2. Supersymmetric Quantum Mechanics

In SUSYQM, a superpotential Wðx, aÞ can generate two
partner potentials

V± x, að Þ =W2 x, að Þ ± ℏffiffiffiffiffiffiffi
2m

p dW x, að Þ
dx

, ð1Þ

and the partner Hamiltonians

H± = −
ℏ2

2m
d2

dx
+V± x, að Þ: ð2Þ

The partner Hamiltonians have identical spectra for an
arbitrary function Wðx, aÞ. The only exceptional case may
be that one of the two partner Hamiltonians has a zero-
energy bound state [7, 9, 10]. For brevity, we set ℏ = 2m =
1. According to superpotential Wðx, aÞ, we can also define
the increasing and decreasing operators A+ and A−:

A± x, að Þ = ∓
d
dx

+W x, að Þ, ð3Þ

and the partner Hamiltonians are given with A+ and A+:

H− = A+A−,H+ = A−A+: ð4Þ

If we suppose the ψ−
0 ðx, aÞ is a normalized function, the

operator’s eigenvalues E−
n are equal to or greater than zero,

E−
n ≥ 0: ð5Þ

Therefore, the operator H− is called the “semi-positive
definite” operator [10]. It is widely known that the partner
Hamiltonians’ eigenfunctions are related by the increasing
and decreasing operators. All excited states ψ−

n satisfy equa-
tions: ψ+

n‐1 = A−ψ−
n , and the corresponding eigenvalues meet

E+
n−1 = E−

n (n = 1, 2, 3⋯⋯). If the ground state of H− has
nothing to do with any state of H+ and meets A−ψ−

0 = 0
which has a normalized solution, then the system is super-
symmetric. Otherwise, it is broken [10].

If SUSY is unbroken, it has a normalized ground state
wave function for the potential V− [16]. According to the
superpotential, we can obtain the zero-energy ground state
wave function ψ−

0 ðx, aÞ:

ψ−
0 x, að Þ =N exp −

ðx
x0

W x, að Þdx
 !

, ð6Þ

where N is a normalized constant. And the ground energy
eigenvalue meet E−

0 = 0. Besides the ground state, all its
energy eigenvalues of the potential V− are obtained with
those of the partner potential V+ [17], i.e.,

E+
n = E−

n+1: ð7Þ

Moreover, the relationships among the eigenstates are

ψ+
n =

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
E−
n+1ð Þp A−ψ−

n+1, ψ−
n =

1ffiffiffiffiffiffiffiffiffiffiffiffi
E+
n‐1ð Þp A+ψ+

n‐1: ð8Þ

The Hamiltonians H± and the partner potentials V±
ðx, aÞ satisfy the shape invariance [18] which have the
following algebraic structure:

H+ x, a0ð Þ + g a0ð Þ =H− x, a1ð Þ + g a1ð Þ,
V+ x, a0ð Þ + g a0ð Þ = V− x, a1ð Þ + g a1ð Þ:

ð9Þ

In the equations above, a1 is an additive function of a0: a1
= f ða0Þ which is independent of x. The eigenvalues meet

E+
n a0ð Þ + g a0ð Þ = E−

n a1ð Þ + g a1ð Þ, ð10Þ

and the eigenfunctions satisfy

ψ+
n x, a0ð Þ = ψ−

n x, a1ð Þ: ð11Þ

Based on SUSYQM, isospectrality [10], and utilizing Equa-
tion (11), we keep iterating Equation (10) and figure up

E−
n anð Þ = g anð Þ − g a0ð Þ: ð12Þ

Analogously, taking no account of the normalization
constant temporarily, we obtain:

ψ−
n x, a0ð Þ∝ A+ x, a0ð ÞA+ x, a1ð Þ⋯ A+ x, an−1ð Þψ−

0 x, anð Þ:
ð13Þ

Then, we can also calculate the energy eigenvalues.
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3. The Shape Invariance with the Generalized
Hyperbolic Pöschl-Teller Potential of the
Superpotential -Atanh(npx)-Bcoth(mpx)

In this part, by appropriate redefinition of the parameters of
superpotential (A tanh ðαxÞ − B coth ðαxÞðA > B > 0Þ) of the
hyperbolic Pöschl-Teller potential, we obtain the generalized
hyperbolic Pöschl-Teller superpotential:

W x, A, Bð Þ = −A tanh npxð Þ − B coth mpxð Þ m ≠ nð Þ: ð14Þ

where A and B are two parameters (the following research is

carried out around these two parameters), p is an arbitrary
positive real number, and m and n are arbitrary positive
integers and are not equal to each other. The superpotential
Wðx, A, BÞ is shown in Figure 1. As can be seen from the
figure, the change has not taken place in curvilinear trends
when p is taken at different values, and only the curve
moves up as the value gets greater. To observe the image
in more detail, by changing the range of x, in Figure 2,
we draw the curve of superpotential with the different
values of A and B.

According to V±ðx, aÞ =W2ðx, aÞ ± dWðx, aÞ/dx, we
can get

V±ðx, A, BÞ meet the shape invariance:

V+ x, A0, B0ð Þ =V− x, A1, B1ð Þ + g A1, B1ð Þ − g A0, B0ð Þ: ð16Þ

where the parameters A1 and B1, respectively, are the func-
tions of the parameters A0 and B0 (A1 = f ðA0Þ, B1 = hðB0Þ).
RðA0, B0Þ is a function of the parameters A0 and B0
(RðA0, B0Þ = gðA1, B1Þ − gðA0, B0Þ). The partner potentials
V±ðx, A0, B0Þ are shown in Figure 3.

There is also a corresponding relationship for H±ðx, A,
BÞ and E+

k ðA, BÞ:

H+ x, A0, B0ð Þ + g A0, B0ð Þ =H− x, A1, B1ð Þ + g A1, B1ð Þ,
E+
k A0, B0ð Þ + g A0, B0ð Þ = E−

k A1, B1ð Þ + g A1, B1ð Þ:
ð17Þ

And there are

ψ+
k x, A0, B0ð Þ = ψ−

k x, A1, B1ð Þ, ð18Þ

E−
k A0, B0ð Þ = g Ak, Bkð Þ − g A0, B0ð Þ = A0

2 + B0
2 − Ak

2 + Bk
2� �
:

ð19Þ
The ground state of H−ðx, A0, B0Þ is

ψ−
0 x, A0, B0ð Þ =Ne

−
Ð x

x0
W x,A0,B0ð Þdx

=N cosh npxð Þð ÞA0/np sinh mpxð Þð ÞB0/mp:

ð20Þ

And we can obtain the first excited state by

ψ−
1 x, A0, B0ð Þ ∼ A+ x, A0, B0ð Þψ−

0 x,A1, B1ð Þ
∼ A+ x, A0, B0ð Þ cosh npxð Þð ÞA1/np sinh mpxð Þð ÞB1/mp:

ð21Þ

According to Equation (18), there is

ψ−
k x, A0, B0ð Þ ∼ A+ x, A0, B0ð ÞA+ x, A1, B1ð ÞA+ x, A2, B2ð Þ⋯ A+

� x, Ak−1, Bk−1ð Þψ−
0 x, Ak, Bkð Þ:

ð22Þ

To get the shape invariance of Equation (16), the coeffi-
cients of those terms that contain the independent variable x
must cancel each other in Equation (15), i.e.,

A0 A0 + npð Þ = A1 A1 − npð Þ, B0 B0 +mpð Þ = B1 B1 −mpð Þ,
ð23Þ

A0B0 = A1B1: ð24Þ

Through solving Equation (23), we obtain

A1 = −A0orA1 = A0 + np

B1 = −B0orB1 = B0 + mp

(
: ð25Þ

Therefore, we acquire four kinds of solutions: (I) A1 =
A0 + np, B1 = B0 + mp; (II) A1 = A0 + np, B1 = −B0; (III) A1
= −A0, B1 = B0 +mp; and (IV) A1 = −A0, B1 = −B0. (Because
this situation (IV) does not meet the additive feature, we will
not discuss it here.)

3.1. Case I: A1 = A0 + np, B1 = B0 +mp. Substituting A1 = A0
+ np, B1 = B0 +mp into Equation (24), we have

B0
mp

+ 1 = −A0
np

, ð26Þ

and Equation (19) is rewritten as

V− x, A1, B1ð Þ = −A1 A1 − npð Þ sech2 npxð Þ + B1 B1 −mpð Þ csch2 mpxð Þ + 2A1B1 tanh npxð Þ coth mpxð Þ + A1
2 + B1

2

V+ = x, A0, B0ð Þ = −A0 A0 + npð Þ sech2 npxð Þ + B0 B0 +mpð Þ csch2 mpxð Þ + 2A0B0 tanh npxð Þ coth mpxð Þ + A0
2 + B0

2

(
:

ð15Þ
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E−
k A0, B0ð Þ = −2A0knp − 2B0kmp − k2n2p2 − k2m2p2: ð27Þ

(The k is an integer greater than zero.)
Since E−

k ≥ 0, the values of parameters in Equation (27)
are limited. Next, we will discuss the value situation of each
parameter, specifically from the value of A0 and B0.

(i) A0 > 0, B0 > 0:

Since the parameters meet k ≥ 0, n > 0, p > 0,m > 0 in
Equation (27), there is

E−
k A0, B0ð Þ = 0, ð28Þ

only when k = 0, E−
k ≥ 0.

(ii) A0 < 0, B0 < 0:

According to A0 < 0, B0 < 0, the range of k is solved:

k < −A0
np

= 1 + B0
mp

, k < −B0
mp

: ð29Þ

To further determine the precise range of k, we must
compare 1 + ðB0/mpÞ with −B0/mp. If ð−B0/mpÞ ≥ 1 + ðB0/
mpÞ, we not only determine the range of k: k < 1 + ðB0/mpÞ,
but also know −B0 ≥ ðmp/2Þ. Then, the precise data range
of k: 0 ≤ k < ð1/2Þ is confirmed. The unique value can be cho-
sen: k = 0, and we figure out E−

0 = 0. If ð−B0/mpÞ < 1 + ðB0/
mpÞ, we can get similar inequations: k < ð−B0/mpÞ, − B0
< ðmp/2Þ and we have 0 ≤ k < ð1/2Þ. So the k has sole
value: k = 0, then we obtain E−

0 = 0.

(iii) A0 > 0, B0 < 0:

It is similar to Equation (29), we acquire the new range
about k:

k > −A0
np

= 1 + B0
mp

, k < −B0
mp

: ð30Þ

Similarly, if we assume ð−B0/mpÞ ≤ 1 + ðB0/mpÞ, by sim-
plifying the above equation, the inequation about B0 is
acquired: −B0 ≤ ðmp/2Þ. Further, we can deduce that k > 1
+ ðB0/mpÞ > ð1/2Þ, k < ð−B0/mpÞ < ð1/2Þ, those which are
contradictory to each other, that is to say, the desired value
of k is nonexistent. If ð−B0/mpÞ > 1 + ðB0/mpÞ, we acquire
the two inequations about parameters B0 and k: −B0 > ðmp
/2Þ, 1 + ðB0/mpÞ < k < ð−B0/mpÞ. We need to compare the
lower bound of k with zero. In the first situation, we have
1 + ðB0/mpÞ > 0⟹ −mp < B0 < 0. When 0 < 1 + ðB0/mpÞ <
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Figure 2: Superpotential Wðx, A, BÞ (m = 2, n = 3, p = 0:5).
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1 and ð−B0/mpÞ < 1, we can get 1 + ðB0/mpÞ < k < ð−B0/mpÞ
in which there is not an integer solution for k. While in
another situation: 1 + ðB0/mpÞ < 0, we can figure out that B0
< −mp, 0 ≤ k < ð−B0/mpÞ. After confirming the range of
parameters, we draw Figure 4 to observe the superpotential
Wðx, A, BÞ.

From Figure 4, we observe that W and x have a negative
correlation, and it is similar to Figure 1 that the change of p
makes no difference in the curvilinear trend. With the
increase of the value of p, the image moves down as a whole.

To satisfy E−
k+1 ≥ E−

k , the value of k has to meet the
condition:

k ≤
− A0n + B0mð Þ
p n2 +m2ð Þ −

1
2 : ð31Þ

If −ðB0/mpÞ ≤ ð−ðA0n + B0mÞ/pðn2 +m2ÞÞ − ð1/2Þ, there
is −B0 ≤ ðpmðn2 −m2Þ/4n2Þ. According to B0<−mp and 0
≤ k < ð−B0/mpÞ, we can get the new range of k: 0 ≤ k <
ð−B0/mpÞ ≤ ðn2 −m2/4n2Þ < ð1/4Þ, so there is the only
result: k = 0, E−

0 = 0. On the contrary, when −ðB0/mpÞ ≥
ð−ðA0n + B0mÞ/pðn2 +m2ÞÞ − ð1/2Þ, we can get the more
precise range of B0 and k: −B0 ≥ ðpmðn2 −m2Þ/4n2Þ, 0
≤ k < ðB0/mpÞ − ðm2/n2 +m2Þ + ð1/2Þ < ð1/2Þ. That is to
say, k = 0, E−

0 = 0 is eligible.

(iv) A0 < 0, B0 > 0:

In this case, there is k < ð−A0/npÞ = 1 + ðB0/mpÞ, k >
ð−B0/mpÞ. On account of B > 0, we can get a sole rea-
sonable situation:

−B0
mp

< 1 + B0
mp

, 0 ≤ k < 1 + B0
mp

: ð32Þ

Considering E−
k+1 ≥ E−

k , we can also acquire Equation
(31). Similar to the discussion in case (iii), when 1 + ðB0/
mpÞ < ð−ðA0n + B0mÞ/pðn2 +m2ÞÞ − ð1/2Þ, there is

B0
mp

< −n2 − 3m2

4m2 < 0, ð33Þ

which is inconsistent with our assumptions. If 1 + ðB0/mpÞ
> ð−ðA0n + B0mÞ/pðn2 +m2ÞÞ − ð1/2Þ is tenable, there is
ðB0/mpÞ > ð−n2 − 3m2/4m2Þ, and 0 ≤ k < ð−ðA0n + B0mÞ/p
ðn2 +m2ÞÞ − ð1/2Þ. And we have

0 ≤ k < B0 n2 −m2� �
mp n2 +m2ð Þ + n2

n2 +m2 −
1
2 : ð34Þ

In the Inequation(34), we demand n2 >m2. When the
parameters B0,m, n, and p are confirmed, the range of k is
entirely determined. According to Equation (26), the A0 is
confirmed. Then we can, respectively, obtain the following
equation:

E−
k A0ð Þ = −2A0knp +

2km2pA0
n

− k2n2p2 − k2m2p2 + 2km2p2,

ψ−
0 x, A0ð Þ ∼ cosh npxð Þð ÞA0/np sinh mpxð Þð Þ− 1+ A0/npð Þð Þ,

ψ−
1 x, A0ð Þ ∼ cosh npxð Þð ÞA0+np/np sinh mpxð Þð Þ−A0/np

� np − 2A0ð Þ tanh npxð Þ + 2A0m
n

+mp
� �

coth mpxð Þ
� �

:

ð35Þ

According to Equation (22), the other wave functions can
also be calculated. At this point, we suppose the appropriate
value for B0,m, n, p: B0 = 18,m = 2, n = 3 and p = 0:5. There
is a maximum of k: k = 7 and A0 = −28:5. In Table 1, we show
the energy eigenvalues E−

k ðk = 0, 1,⋯, 7Þ. In Figures 5 and 6,
we show the ground state and first excited state wave functions.

3.2. Case II: A1 = A0 + np, B1 = −B0.We can get the following
solutions through Equation (24):

B0 = 0, A1 = A0 + np, orB0 = −B1 ≠ 0, A0 = −
np
2 : ð36Þ

For B0 = 0, A1 = A0 + np, the superpotential is adapted as
Wðx, A, BÞ = −A tanh ðnpxÞ which can be treated as the spe-
cial shape of Rosen-Morse II (hyperbolic) [10, 19]. There is a
detailed discussion in Problem 4.2 of Ref. [11].

For the second solution in Equation (36), there are

E−
k A0ð Þ = −knp −np + knpð Þ,

ψ−
0 x, A0, B0ð Þ = cosh npxð Þð Þ−1/2 sin mpxð Þð ÞB0/mp,

ψ−
1 x, A0, B0ð Þ ∼ A+ x, A0, B0ð Þ cosh npxð Þð Þ−1/2 sin mpxð Þð ÞB0/mp = 0:

ð37Þ
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Figure 4: Superpotential Wðx, A, BÞ
ðm = 5, n = 10, A = 10, B = −6Þ.
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To meet the supersymmetry of the system, the k only
have two values: k = 0, k = 1. And the first excited state is
missing. The eigenstate that satisfies the condition −B0 >
ðmp/2Þ and 1 + ðB0/mpÞ < k < ð−B0/mpÞ is found to be
only a ground state:k = 0, E−

0 ðA0Þ = 0.

3.3. Case III: A1 = −A0, B1 = B0 +mp. It is similar to Case II,
so we will not repreat the discussion. So far, we have syste-
matically studied the shape invariances of the generalized
hyperbolic Pöschl-Teller potential based on SUSYQM, and
discussed in detail the influence of the shape invariance of
parameters A and B, and analyzed the relationship between
parameters and eigenvalues or eigenfunctions. The research
results are summarized in Table 2.

4. Potential Algebra of the Shape
Invariance with the Generalized Hyperbolic
Pöschl-Teller Superpotential

In this section, the shape invariance is analyzed again by the
potential algebra approach [20] with the generalized hyper-
bolic Pöschl-Teller superpotential of two parameters A and
B. Let us make the following replacement:

x⟶ z, A0, B0ð Þ⟶ χ i∂ϕA, i∂ϕB
� �

⟹ A± x, A0, B0ð Þ⟶A± z, χ i∂ϕA, i∂ϕB
� �� �

,
ð38Þ

and introduce operators J3 and J± (J3 is called the Casimir
operator [19]):

J+ = ei sAϕA+sBϕBð ÞA+,
J− =A−e−i sAϕA+sBϕBð Þ

JA3 = kA − i
∂ϕA
sA

� �
,

JB3 = kB − i
∂ϕB
sB

� �
:

ð39Þ

According to Equation (39) and Wðx, A, BÞ = −A tanh ðn
pxÞ − B coth ðmpxÞ, using the properties e∓isϕ J3e

±isϕ = J3 ± s,
e∓isϕ J3

2e±isϕ = ðJ3 ± sÞ2, we can figure out J+ J− and J− J+:

J+ J− = ei sAϕA+sBϕBð ÞA+ z, χ i∂ϕA , i∂ϕB
	 
	 


A−

� z, χ i∂ϕA , i∂ϕB
	 
	 


e−i sAϕA+sBϕBð Þ

= −
d2

dz2
+ sA kA − JA3 + 1

� �
np − s2A kA − JA3 + 1

� �2h i
sech2 npzð Þ

− sB kB − JB3 + 1
� �

mp − s2B kB − JB3 + 1
� �2h i

csch2 mpzð Þ
+ 2sAsB kA − JA3 + 1

� �
kB − JB3 + 1
� �

coth mpzð Þ tanh npzð Þ
+ s2B kB − JB3 + 1

� �2 + s2A kA − JA3 + 1
� �2,

J− J+ =A− z, χ i∂ϕA , i∂ϕB
	 
	

A+ z, χ i∂ϕA , i∂ϕB
	 
	

= −
d2

dz2
− sA kA − JA3

� �
np + s2A kA − JA3

� �2h i
sech2 npzð Þ

+ sB kB − JB3
� �

mp + s2B kB − JB3
� �2h i

csch2 mpzð Þ
+ 2sAsB kA − JA3

� �
kB − JB3
� �

coth mpzð Þ tanh npzð Þ
+ s2B kB − JB3

� �2 + s2A kA − JA3
� �2

:

ð40Þ

In terms of the requirement of the potential algebra of the
shape invariance, J+ J− and J− J+ (in their expressions, the terms
containing the independent variable zmust cancel each other)
will satisfy

J+ J− − J− J+ = F JA3 , JB3
� �

: ð41Þ

So, we have

sA = np, sB =mp, JB3 + JA3 = kA + kB + 1: ð42Þ

According to the reference [21, 22]

F JA3 , JB3
� �

=G JA3 , JB3
� �

−G JA3 − sA, JB3 − sB
� �

= − s2A kA − JA3
� �2 + s2B kB − JB3

� �2	 

− − s2B kB − JB3 + 1

� �2 + s2A kA − JA3 + 1
� �2	 
h i

,

ð43Þ

so

G JA3 , JB3
� �

= − s2A kA − JA3
� �2 + s2B kB − JB3

� �2	 

: ð44Þ

And from

H−ψl zð Þ = J+ J−ψl zð Þ = E−
l ψl zð Þ

= G hA − l − 1, hB − l − 1ð Þ −G hA − 1, hB − 1ð Þ½ �ψl zð Þ,
ð45Þ

we have

Table 1: The energy eigenvalue E−
k .

B0 = 18, A0 = −28:5,m = 2, n = 3, p = 0:5
k 0 1 2 3 4 5 6 7

E−
k 0 46.25 86.00 119.25 146.00 166.25 180.00 187.25
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E−
l = G hA − l − 1, hB − l − 1ð Þ − G hA − 1, hB − 1ð Þ
= s2A kA − hA + 1ð Þ2 + s2B kB − hB + 1ð Þ2� �

− s2A kA − hA + 1 + lð Þ2 + s2B kB − hB + 1 + lð Þ2� � ð46Þ

Setting A = sA½kA − ðhA − sAÞ�, B = sB½kB − ðhB − sBÞ�,
we get

E−
l = A2 + B2 − A + lnpð Þ2 + B + lmpð Þ2� �

: ð47Þ

Comparing Equation (19) with Equation (47), we
find that the shape invariance of the partner potential
with the generalized hyperbolic Pöschl-Teller superpoten-
tial is anastomotic to itself in potential algebraic form.
This potential algebraic form corresponds to A1 = A0 +
np and B1 = B0 +mp, namely, case I.

For case II, A1 = A0 + np and B1 = −B0, it is a prerequisite
for us to carry out our study with a similar substitution of
Equation (38). According to Equation (38) and (39), we
can figure out J+ J− and J− J+ (when it comes to calculating
the equation of J+ J−, on account that only the parameter A
meets the additivity feature, we only need to replace the
parameter A with the relevant operator. For the parameter
B, we directly replace it as −B):

J+ J− = eisAϕAA+ z, χ i∂ϕA ,−B0
	 
	 


A− z, χ i∂ϕA ,−B0
	 
	 


e−isAϕA

= −
d2

dz2
+ sA kA − JA3 + 1

� �
np − s2A kA − JA3 + 1

� �2h i
sech2 npzð Þ

+ B0mp + B2
0

� �
csch2 mpzð Þ − 2sAB0 kA − JA3 + 1

� �
coth mpzð Þ tanh npzð Þ

+ B2
0 + s2A kA − JA3 + 1

� �2,
J− J+ =A− z, χ i∂ϕA , B0

	 
	
A+ z, χ i∂ϕA , B0

	 
	
= −

d2

dz2
− sA kA − JA3

� �
np + s2A kA − JA3

� �2h i
sech2 npzð Þ

+ B0mp + B2
0

� �
csch2 mpzð Þ + 2sAB0 kA − JA3

� �
coth mpzð Þ tanh npzð Þ

+ B2
0 + s2A kA − JA3

� �2
:

ð48Þ

In terms of the requirement of the potential algebra of
the shape invariance, J+ J− and J− J+ (in their expressions,
the terms containing the variable z must cancel each other)
will satisfy
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Figure 5: The ground wave functions: ψ−
0 ðx, A0, B0Þ (m = 2, n = 3, p = 0:5).
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Figure 6: The first excited state wave functions: ψ−
1 ðx, A0, B0Þ

(m = 2, n = 3, p = 0:5).
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J+ J− − J− J+ = F JA3 , JB3
� �

: ð49Þ

So, we have

(i) For B0 = 0, we can acquire the particular form of
Rosen-Morse (hyperbolic).

(ii) For B0 ≠ 0, we should guarantee that the cross term
(coth ðmpzÞ tanh ðnpzÞ) possesses the same coeffi-
cient value, so there is −2sAB0ðkA − JA3 + sAÞ
= 2sAB0ðkA − JA3 Þ. It is the reason for FðJA3 , B0Þ being
equal to zero. That is to say, the case only corre-
sponds to the monomorphism and it is coincident
with the discussion in 3.2 case II of this paper

5. Conclusions

Because Pöschl-Teller potential and its generalized poten-
tials are applied widely in atomic and molecular physics
and nuclear physics, it is significant to research those poten-
tials further. In this paper, we investigate the solution of the
Schrödinger equation with the potential of the generalized
superpotential −A tanh ðnpxÞ − B coth ðmpxÞ. In Section 3,
we derive three kinds of additive shape invariances of part-
ner potentials with the generalized superpotential based on
the principles of SUSYQM. To guarantee that the supersym-
metry is unbroken, we carry out the discussions and figure
out eigenfunctions and eigenvalues, respectively, in three
cases shown in Table 2. As can be seen from the table, the
eigenvalue only exists in the sole zero solution except for
two situations. In the two situations, the eigenvalues all rely
on the parameter values. That is to say, the number of k is
determined when these parameters are specific. For example,
in the fourth section of 3.1 case I, by assuming B0 = 18, A0
= −28:5,m = 2, n = 3, p = 0:5, we can acquire the eigenvalues
and eigenfunctions. Moreover, in Table 1, Figures 5 and 6,
we show the eigenvalues and eigenfunctions, respectively.
In the latter part of the article, we analyze the shape invari-

ance again through the potential algebra approach. The
shape invariances of the partner potentials are anastomotic
in their potential algebraic forms.

Although the shape invariance of the partner potentials
with superpotential −A tanh ðnpxÞ − B coth ðmpxÞ has two-
parameter characteristics, from the present discussion, we
can see that it still belongs to the single-parameter case.
However, compared with the natural single-parameter shape
invariance, that of the generalized hyperbolic Pöschl-Teller
superpotential is much more complicated. In addition, the
solutions of the Schrödinger equation with such potential
deduced from the superpotential are more complex. Starting
from the generalization of hyperbolic Pöschl-Teller superpo-
tential in this paper, it also has a more remarkable reference
significance for other potentials. In SUSYQM, there are
many solvable potentials with two parameters at present,
such as the scarf I potential, the scarf II potential, and the
Pöschl-Teller I ðA coth ðpxÞ − B csch ðpxÞÞ. The further
study of these potentials can follow the method of this paper:
first, make a more general generalization of the superpoten-
tials of these potentials, then study the shape invariance of
the partner potentials corresponding with those superpoten-
tials, and then analyze the relationship between shape invari-
ance and parameters. This can not only clarify the influence
of two parameters on the shape invariant partner potentials,
but also get some new characteristics of shape invariance
under two-parameter constraints. Does the shape invariance
of these two-parameter partner potentials really show the
two-parameter characteristic, and will it bring some new
meaningful results? According to the recent results of our
study group, a further study of the shape invariance of the
two parameters is well expected.

Data Availability

The data availability statement: the data used to support the
findings of this study are included within the article.

Table 2: The summary of the generalized hyperbolic Pöschl-Teller superpotential.

Cases Expression of eigenvalue Parameter range Eigenvalue

I:
A1 = A0 + np

B1 = B0 + mp

E−
k A0, B0ð Þ = −2A0knp − 2B0kmp

− k2n2p2 − k2m2p2

A > 0, B > 0, k = 0 E−
0 = 0 k = 0ð Þ

A < 0, B < 0
k < 1 + B0/mpð Þor k < −B0/mp0 ≤ k < 1/2 E−

0 = 0 k = 0ð Þ

A > 0, B < 0
0 ≤ k < −B0/mp,0 ≤ k < 1/4 E−

0 = 0 k = 0ð Þ

A > 0, B < 0
0 ≤ k < − A0n + B0mð Þ/p n2 +m2� �

− 1/20 ≤ k < 1/2 E−
0 = 0 k = 0ð Þ

A < 0, B > 0
0 ≤ k < B0 n2 −m2� �

/mp n2 +m2� �� �
+

n2/n2 +m2 − 1/2

Depend on the parameters
A0, B0, n,m, p

II:
A1 = A0 + np

B1 = −B0

E−
k A0ð Þ = −knp 2A0 + knpð Þ
(B0 = 0, A1 = A0 + np)

0 ≤ k < −A0/np
Depend on the parameters

A0, n, p
E−
k A0ð Þ = −knp −np + knpð Þ
(B0 = −B1 ≠ 0, A0 = −np/2) k = 0 E−

0 = 0
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