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Abstract

Riemann hypothesis is a conjecture that real part of every non-trivial zero of the Riemann zeta
function is 1/2.
The main contribution of this paper is to achieve the proof of Riemann hypothesis. The key idea
is to provide an Hamiltonian operator whose real eigenvalues correspond to the imaginary parts
of the non-trivial zeros of Riemann zeta function and whose existence, according to Hilbert and
Pólya, proves Riemann hypothesis.
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1 Introduction

In his book [1] of 1748, Leonhard Euler (1707-1783) proved what is now named the Euler product
formula. This product is the result of the following infinite sum.∑∞

n=1

1

ns
=

∏
p∈P(1− 1/ps)−1 for any integer variable s > 1

*Corresponding author: E-mail: rdeloin@free.fr

http://sciencedomain.org/review-history/23908


Deloin; ARJOM, 9(1): 1-8, 2018; Article no.ARJOM.40341

where P is the infinite set of primes.

In his article [2] of 1859, Riemann (1826-1866) extended the Euler definition to the complex variable
s of the zeta function.

ζ(s) =
∏

p∈P(1− 1/ps)−1 for any complex variable s ̸= 1

It is known that the trivial zeros of the function are the infinite set

{s1} = {−2m} for all integers m > 0.

Riemann hypothesis can be seen as stating that

Probably, the infinite set of the non-trivial zeros {s2} of ζ(s) can be written as

{s2} = { 1
2
+ itn} where tn is real.

This conjecture is the first point of the eighth unresolved problem (among 23) that Hilbert listed in
1900 [3] as well as the second unresolved problem listed in 2000 by The Clay Mathematics Institute
[4]. It has been very well described by Bombieri [5] and various approaches were listed in 2003 by
Conrey [6] who says the following in his conclusion.

“A major difficulty in trying to construct a proof of RH through analysis is that the zeros of L-
functions behave so much differently from zeros of many of the special functions we are used to
seeing in mathematics and mathematical physics.

It is my belief that RH is a genuinely arithmetic question that likely will not succumb to methods
of analysis.”

That is why in the present paper, the many attempts of proof based on methods of analysis are
consciously ignored and an approach is chosen, based on an operator point-of-view suggested by
a discussion that occured in the 1910s between two mathematicians: Landau and Pólya. This
discussion, whose track has been traced back by Andrew Odlyzko [7] in 1981-1982, gave the
statement of the next section.

2 Preliminary Notes

2.1 The Hilbert-Pólya statement

Circa 1914 and independently from each other, Hilbert et Pólya[8] have orally stated that Riemann
hypothesis would be proved if it could be shown that the imaginary parts tn of the non-trivial zeros
of the symmetrical xi function ξ(s) derived from ζ(s), corresponded to the real eigenvalues of an
unbounded self-adjoint Hamiltonian operator (here named Ĥξ) for which we could write:

Ĥξψk = Ekψk (2.1)

which is an equation of quantum physics where Ek stands for the kD-components in a kD-space of
a physical energy, with k = ∞.

So, the first and unique purely mathematical clue that we have is that the operator Ĥξ should be
a square matrix of infinite dimension with real eigenvalues. This means that it could be written:
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Ĥξ = (tn) =


. . . . . . . . . . . . . . . . . .
. . . tn−1 0 0 0 . . .
. . . 0 tn 0 0 . . .
. . . 0 0 tn+1 0 . . .
. . . 0 0 0 tn+2 . . .
. . . . . . . . . . . . . . . . . .

 all tn being real

3 Proof of Riemann Hypothesis

As Hilbert-Pólya statement will be used to prove Riemann Hypothesis, the complete proof will be
established in three steps:

The first one proves that Hilbert-Pólya statement is indeed a conditional proof of Riemann Hypothesis.

The second one is a preparation for the third one.

The third one establishes the unconditional proof of Riemann Hypothesis.

3.1 Proof of Hilbert-Pólya statement

Proof. By definition, a complex number s is written:

s = x+ iy where x and y are real and i =
√
−1

By changing the conventional system of coordinates (x, y) of the complex plane into the new one
(x′ = 1

2
− x, y′ = y), these complex numbers can be written:

s = x′ + iy′ in the new system
or:

s = ( 1
2
− x) + iy when using the change of coordinates.

Condition. We suppose that the Ĥξ operator exists and that it contains the infinitely many real
eigenvalues tn coming from the non-trivial zeros s2 of ζ(s).

Hypothesis. We then suppose that these non-trivial zeros can lie anywhere in the complex plane
with the two exceptions that they cannot lie on the real axis x or x’ (reserved for trivial zeros s1),
which gives:

y ̸= 0 and y′ ̸= 0

nor on the conventional critical line x = 1
2
that becomes the new imaginary axis y′, which gives:

x ̸= 1
2
and x′ ̸= 0

Then, each non-trivial zero s2 of ζ(s) could be written:

s2 = x′2 + iy′2 with x′2 ̸= 0 and y′2 ̸= 0
or, using the change of coordinates:

s2 = ( 1
2
− x2) + iy2 with x2 ̸= 1

2
and y2 ̸= 0

Now, using the fact that −x2 = i2x2, they can be written:

s2 = ( 1
2
+ i2x2) + iy2 = 1

2
+ i(y2 + ix2) with x2 ̸= 1

2
and y2 ̸= 0

or:
s2 = 1

2
+ it2 with t2 = y2 + ix2, x2 ̸= 1

2
and y2 ̸= 0
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and we get the result, as t2 = y2 + ix2 has to be real, that x2 has to be zero. This is not a direct
contradiction to the hypothesis but this result has been proven wrong 1013 times with the first
1013 non- trivial zeros s2 [9] for which x2 = 1/2. Each of these 1013 contradictions proves that our
hypothesis is wrong and that Riemann hypothesis is true conditionally to the existence of the Ĥξ

operator, which is exactly Hilbert-Pólya statement.

3.2 Preparing the unconditional proof of Riemann Hypothesis

As Riemann Hypothesis is now proven conditionally to the existence of the Ĥξ operator, we have
to prove that the Ĥξ operator does exist.

To do this, we first notice that this operator is not a full link to ζ(s) as it refers only to its second
set of non-trivial zeros {s2}. We will therefore consider the new and larger operator Ĥζ built with
the zeros of both sets {s1} and {s2} as eigenvalues, an operator that also contains the real values
tn (but not as eigenvalues):

Ĥζ =



. . . . . . . . . . . . . . . . . . . . . . . .

. . . −6 0 0 0 0 0 . . .

. . . 0 −4 0 0 0 0 . . .

. . . 0 0 −2 0 0 0 . . .

. . . 0 0 0 1
2
+ it1 0 0 . . .

. . . 0 0 0 0 1
2
+ it2 0 . . .

. . . 0 0 0 0 0 1
2
+ it3 . . .

. . . . . . . . . . . . . . . . . . . . . . . .


As this new operator contains the real values tn, it enables us, at any time, to rebuild the operator
Ĥξ of Hilbert and Pólya. To simplify the writing, we set:

(0) for all necessary zero values on and outside the diagonal,
. . . . . . . . . . . .
. . . −6 0 0
. . . 0 −4 0
. . . 0 0 −2

 = (−2m)

and: 
1
2
+ it1 0 0 . . .
0 1

2
+ it2 0 . . .

0 0 1
2
+ it3 . . .

. . . . . . . . . . . .

 =
(
1
2
+ itn

)

so that Ĥζ can be written:

Ĥζ =

(
(−2m) (0)
(0)

(
1
2
+ itn

)) =

(
(−2m) (0)
(0)

(
1
2

))+ i

(
(0) (0)

(0) Ĥξ

)
Now, the matrices (−2m) and

(
1
2
+ itn

)
representing the sets of zeros {s1} and {s2} can symbolically

be replaced by their parametric form:

−2m, m > 0 being an integer parameter
1
2
+ itn, tn being a real parameter

The sets {s1} and {s2} can then be considered as the two infinite sets of roots of the polynomial of
complex variable s:
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P (s) = (s− s1)(s− s2) = s2 − (s1 + s2)s+ s1s2
P (s,m, tn) = s2 − (−2m+ 1

2
+ itn)s− 2m( 1

2
+ itn)

P (s,m, tn) = s2 + (2m− ( 1
2
+ itn))s− 2m( 1

2
+ itn)

which, using matrices, can be written either:

P (s,m, tn) =
(
s2 s 1

)1 0 0
0 (2m− ( 1

2
+ itn)) 0

0 0 −2m( 1
2
+ itn)

1
1
1

 (3.1)

or:

P (s,m, tn) =
(
1 1 1

)1 0 0
0 (2m− ( 1

2
+ itn)) 0

0 0 −2m( 1
2
+ itn)

s2s
1

 (3.2)

By setting:

Êk =
(
s2 s 1

)1 0 0
0 (2m− ( 1

2
+ itn)) 0

0 0 −2m( 1
2
+ itn)


=

(
s2 (2m− ( 1

2
+ itn))s −2m( 1

2
+ itn)

)
and:

ψEk =

1
1
1


and, by multiplying its first two matrices, equation (3.1) gives:

P (s,m, tn) =
(
s2 (2m− ( 1

2
+ itn))s −2m( 1

2
+ itn)

)1
1
1

 = ÊkψEk (3.3)

where k is now reduced to k = 3 so that our initial problem is also reduced to our 3D space. As by
multiplying the first two matrices of (3.2), we also have:

P (s,m, tn) =
(
1 (2m− ( 1

2
+ itn)) −2m( 1

2
+ itn)

)s2s
1

 = ĤkψHk (3.4)

when we set:
Ĥk =

(
1 (2m− ( 1

2
+ itn)) −2m( 1

2
+ itn)

)
(3.5)

and:

ψHk =

s2s
1

 = R̂

1
1
1

 = R̂ψEk

where R̂ is the 3-dimensional transformation matrix from the orthogonal system of coordinates ψHk

used to describe Ĥk to the orthogonal system ψEk used to describe Êk, and we have:

ĤkψHk = ĤkR̂ψEk = ÊkψEk

Then, setting Ĥ = ĤkR̂ , we get:
ĤψEk = ÊkψEk (3.6)

which is almost identical to equation (2.1). Here, if the words almost identical are used, it is because
Êk is an operator that may not be real as required by equation (2.1). That is why in the next section
we look for the conditions that could make it real.
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3.3 Unconditional proof of Riemann hypothesis

Proof. From equation (3.6) we have:

Êk = Ĥ = ĤkR̂

and as from equation (3.5), Ĥk can also be written:

Ĥk =
(
1 1 1

)1 0 0
0 (2m− ( 1

2
+ itn)) 0

0 0 −2m( 1
2
+ itn)

 =
(
1 1 1

)
Â

when we set:

Â =

1 0 0
0 (2m− ( 1

2
+ itn)) 0

0 0 −2m( 1
2
+ itn)

 (3.7)

we get from (3.2) and (3.1) that:

(
1 1 1

)
Â

s2s
1

 = P (s,m, tn) =
(
s2 s 1

)
Â

1
1
1

 (3.8)

But, for any s = x+ iy, we have:

P (s) = (s− s1)(s− s2) = s2 − (s1 + s2)s+ s1s2

and, using parameters:

P (s,m, tn) = s2 +

(
2m− (

1

2
+ itn)

)
s− 2m

(
1

2
+ itn

)
= (x+ iy)2 +

(
2m− (

1

2
+ itn)

)
(x+ iy)− 2m

(
1

2
+ itn

)
=

(
x2 − y2 + (2m− 1

2
)x+ ytn

)
+ i

(
−xtn + y(2m− 1

2
)

)
−m− 2mitn

=

(
x2 − y2 + (2m− 1

2
)x+ ytn −m

)
+ i

(
−xtn + y(2x+ 2m− 1

2
)− 2mtn

)
so that P (s,m, tn) will be real only when:

−xtn + y(2x+ 2m− 1
2
)− 2mtn = 0

and so, only for the infinitely many curves in the complex plane such that:

y = tn
x+ 2m

2x+ 2m− 1
2

= tn
x+ 2m

(x+ 2m) + (x− 1
2
)

which, for x = 1
2
, are all at y = tn

and for x = −2m, are all at y = 0. Then, for all the points of all these (hyperbole-like) curves, we
have that:

P (s,m, tn)curves =

(
x2 − y2 + (2m− 1

2
)x+ ytn −m

)
= V (x, y) (3.9)

is a real value and therefore the real mono-term matrix (V (x, y)) always verifies:

(V (x, y)) = (V (x, y)) = (V (x, y))T (3.10)

where (V (x, y)) is the conjugate matrix of (V (x, y)) and (V (x, y))T is the conjugate transpose of
(V (x, y)). So, from (3.8), (3.9) and (3.10), we can write:
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P (s,m, tn)curves = V (x, y) =
(
1 1 1

)
Â

s2s
1

 =

(
s2 s 1

)
Â

1
1
1

T

which proves that the operator Â, also providing the real tn’s to Ĥξ, verifies the equation of the
observables in quantum physics, which is generally written:

< ψ1 |Â| ψ2 > =
(
< ψ2 |Â| ψ1 >

)T
where Â is the Hamiltonian operator associated to the physical quantity A = V (x, y), < x | and
| x > are the bra and ket operators (see[10]) on x, and ψ1 and ψ2 are the states of the real physical
quantity A before and after the measuring of A.

As we have:

Êk = Ĥ = ĤkR̂ =
(
1 1 1

)
ÂR̂

and as Â can be associated with a real physical quantity A = V (x, y), Êk = Ĥ can also be associated
with a real physical quantity Ek in equation (3.6), this last one becoming identical to (2.1).

As we can rebuild the Hamiltonian operator Ĥξ linked to ζ(s) via the function P (s,m, tn) and
the existing operator Ĥ or Êk, this Hamiltonian operator Ĥξ does exist and as we have proven
earlier that Riemann hypothesis is true conditionally to the existence of the Ĥξ operator, Riemann
hypothesis is therefore unconditionally proven.

4 Conclusion

It has to be noticed and highlighted that this proof does not use, as guessed by Conrey [6], any of
the classical and internal analysis of ζ(s) with integrals, Fourier series, probabilities, etc. It uses
only:

- complex numbers, in response to the complex variable s used by Riemann and to prove Hilbert-
Pólya statement;

- parameters and polynomials, a side-step to replace the zeros of ζ(s) by parameters and to move
the initial problem, already down-sized to matrices, to a simpler one with polynomials;

- operators and matrices, in response to equation (2.1) and to the eigenvalues cited in the Hilbert-
Pólya statement and to express a polynomial as a product of matrices in a 3-dimensional space,
and finally to find a self-adjoint hermitian operator that makes a link to a real physical observable,
and enables to rebuild the Hilbert-Pólya operator, thus proving Riemann hypothesis.
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