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Abstract 
Load identification method is one of the major technical difficulties of 
non-intrusive composite monitoring. Binary V-I trajectory image can reflect 
the original V-I trajectory characteristics to a large extent, so it is widely used 
in load identification. However, using single binary V-I trajectory feature for 
load identification has certain limitations. In order to improve the accuracy of 
load identification, the power feature is added on the basis of the binary V-I 
trajectory feature in this paper. We change the initial binary V-I trajectory 
into a new 3D feature by mapping the power feature to the third dimension. 
In order to reduce the impact of imbalance samples on load identification, the 
SVM SMOTE algorithm is used to balance the samples. Based on the deep 
learning method, the convolutional neural network model is used to extract 
the newly produced 3D feature to achieve load identification in this paper. 
The results indicate the new 3D feature has better observability and the pro-
posed model has higher identification performance compared with other 
classification models on the public data set PLAID. 
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1. Introduction 

With the continuous innovation of load identification related technologies, 
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non-intrusive load monitoring systems will also be widely used in the power 
management side and the residential user domain. NILM was proposed by Hart 
as early as the 1980s, whose core is to disaggregate the load power consumption 
[1]. As one of the important components of NILM, many scholars have pro-
posed many methods in the study of non-intrusive load identification. The me-
thods commonly used include mathematical methods [2] [3], machine learning 
[4] [5], and optimization algorithms [6] [7]. With the rapid development of deep 
learning technology, many experts and scholars apply it to non-invasive load 
identification and have achieved excellent results. Reference [8] proposes a load 
identification method based on Recurrent Neural Networks (RNN) model, 
which memorizes historical input features, establishes the internal relationship 
between input mapping and output, and realizes reliable identification of load 
feature tags. Reference [9] proposes a NILM-based energy management system 
for appliance-level load monitoring service and a convolution neural network 
based on differential input. The experiment results show that the proposed net-
work with small size achieves better effect than other comparative models. A 
resident electricity load identification algorithm based on convolution neural 
network (CNN) is studied [10]. The algorithm turns the method based on cur-
rent vector feature extraction to the method of extracting current picture fea-
tures during appliance operation. The CNN model is established and trained for 
typical household appliance loads through load operation current to achieve the 
purpose of identification. 

Compared with optimization algorithm and machine learning, neural network 
has better observation ability in processing high-dimensional data features. 
Therefore, a non-intrusive load identification model based on 3D convolution 
neural network in the background of non-intrusive load monitoring is proposed 
in the paper. Firstly, aiming at the problem that the binary V-I trajectory image 
cannot reflect the power characteristics of the loads, a new feature is produced 
by mapping the power P to the third dimension, i.e., add the third dimension to 
the binary V-I trajectory image to make it a 3D feature. The new 3D feature in-
cludes current, voltage and power characteristics, which have better observability 
than binary V-I trajectory image. Then, through using the feature extraction 
function of 3D convolutional neural network, the new feature is flattened into 
one-dimensional feature, that is, the three-dimensional spatial feature is trans-
formed into one-dimensional array, which is convenient for later load identifica-
tion. Finally, the experimental results show that the new 3D feature have better 
observability and the proposed model has higher identification performance 
compared with other classification models on the public data set PLAID. 

2. Processing of Imbalance Data Sets and Identifiable  
Feature Selection 

2.1. Introduction of Data Sets Used 

This paper uses the public data set PLAID to train and evaluate the model [11]. 
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This data set records the measurement values of current and voltage in 11 dif-
ferent types of electrical loads from 55 households in Pittsburgh, Pennsylvania, 
USA, which contains 1074 sets of samples of 235 independent electrical equip-
ment data with 30 kHz sampling frequency. 

Due to the large sampling randomness in the data contained in PLAID, the 
sample imbalance phenomenon is caused. Such as majority of samples, compact 
fluorescent lamps, hair dryers, and notebooks, there are as many as 175 groups, 
156 groups, and 172 groups respectively, while the minority types sample, refri-
gerators, heaters and washing machines, there are only 38 groups, 35 groups, 
and 26 groups of data respectively. For the majority of equipment categories, the 
model can have enough features for learning. But the minority samples lack 
comparable features to the former, which results in deviations in the identifica-
tion accuracy of the model. Based on this problem, an oversampling technique 
should be used to process the imbalance data set by taking the category with the 
majority samples as the standard. 

Oversampling technique is a method commonly used for equalizing unba-
lanced data sets, but there are some noise samples near the majority and minor-
ity samples in practical problems. If the minority samples are oversampled in the 
case, more noise samples will be generated, which will mislead the classifier and 
reduce the classification accuracy. The difficulty of oversampling technology is 
how to deal with noise data so that the distribution of new data is similar to that 
of original data, thus improving the classification accuracy. 

2.2. SVM SMOTE Algorithm 

Aiming at the problems of data distribution marginalizing and classification 
boundary blurring in traditional SMOTE, the boundary region can be focused to 
achieve better classification performance. Using boundary samples is essential to 
estimate the best classification boundary. Therefore, only the minority samples 
need to be synthesized along the classification boundary during oversampling, 
instead of sampling all minority samples. Therefore, a method based on the 
support vector machine (SVM) synthetic minority over-sampling technique 
(SMOTE) is employed in this paper, and the boundary region is the support 
vector approximation obtained after the SVM classifier is trained on the initial 
training set [12]. 

SVM SMOTE selects different decision mechanisms to synthesize minority 
samples according to the density of the majority samples in the minority support 
vector. Suppose the number of majority samples is k among the K nearest 
neighbor samples of minority sample iρ . If k K= , then iρ  is considered as a 
noise sample and needs to be reselect again. If / 2k K< , use extrapolation me-
thod to iρ . If / 2k K> , use interpolation method to iρ . 

The essence of the SVM SMOTE algorithm is based on the oversampling of 
the support vector. In order to improving the accuracy of classification, near the 
classification boundary of the support vector, the minority samples are generat-
ed according to the decision-making mechanism and expanded to areas where 
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the majority samples density is not high. The distribution of sample data before 
and after SVM SMOTE processing is listed in Table 1. 

Where label 1 means Air Conditioner, label 2 means Compact Fluorescent 
Lamp, label 3 means Fan, label 4 means Fridge, label 5 represents Hairdryer, la-
bel 6 indicates the Heater, label 7 indicates the Incandescent Light Bulb, label 8 
indicates the Laptop, label 9 represents Microwave, label 10 means Vacuum, and 
label 11 indicates the Washing Machine. 

The minority samples are expanded, and the initial samples are increased to 
1925 after the unbalanced data is processed by the SVM SMOTE method, where 
the number of samples for each type of electrical appliances is 175 respectively. 

2.3. Feature Selection 
2.3.1. Binary Voltage-Current Trajectory 
The binary V-I trajectory feature maps the initial V-I trajectory to a matrix with 
a certain size, which can almost reflect the features of the initial V-I trajectory 
image. Power feature is one of important parameters that reflects load characte-
ristic. However, the V-I trajectory image cannot reflect the power characteristics 
of the appliances. In order to improve the accuracy of load identification, we add 
the power feature P on the basis of the binary V-I trajectory feature. 

2.3.2. Power Characteristic 
Since the sampling signal of binary voltage-current trajectory image is high-frequency 
voltage and current data, it is necessary to obtain the active power of the house-
hold loads during steady-state operation according to the high-frequency dis-
crete sampling data [13]. FFT is employed to extract the power characteristics of 
the appliances in this paper [14]. 

In this paper, the sampling number of voltage and current signals in a 
steady-state period is 500M = . Suppose the k-order frequency domain signal 
after FFT is ( ) ( ) j ( )S k a k b k= + , and its modulus are ( )S k  and phase angle 
are arg( ( ))S k . The effective value of different orders voltage and current and 
phase angle are 
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where (0)V  and (0)I  are effective value of fundamental voltage and current 
respectively, ( )kV  and ( )kI  are effective value of kth harmonic voltage and  
 
Table 1. Distribution of the samples before and after SVM SMOTE. 

Instances 
Appliance types 

1 2 3 4 5 6 7 8 9 10 11 

before SVM SMOTE 66 175 115 38 156 35 114 172 139 38 26 

after SVM SMOTE 175 175 175 175 175 175 175 175 175 175 175 
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current respectively, ukφ  and ikφ  are phase angle of kth harmonic voltage and 
current respectively, vS  and iS  are the signals of voltage and current respec-
tively. 

Time-domain voltage and current signals can be respectively expressed as: 
499
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where ω  is the angular frequency. 
The average active power is 
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2.3.3. New 3D Feature 
Inspired by the binary V-I trajectory, a new feature is produced by mapping the 
power feature P to the third dimension, i.e., we change the initial binary V-I tra-
jectory into a 3D object. 

The acquisition method of new 3D feature is as follows. 
1) Collect the high frequency voltage and current waveforms of the device 

during a steady-state cycle and the power characteristics of the device after FFT 
processing. It is assumed that there are p sampling points in a period and the 3D 
feature is composed of a spatial shape with the size of q q q× × .  

2) The voltage, current and power values in the steady-state period are linearly 
converted to integers among 0 ~ q . The conversion formulas of voltage, cur-
rent and power at each sampling point are as follows: 
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max min
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where 1,2, ,m p=  . p is the one-dimensional size of the spatial shape. mI , 

mV  and mP  are the current, voltage and power values of the mth sampling 
point of the original data respectively. mi , mv  and mp  are the converted cur-
rent, voltage and power values of the mth sampling point respectively. min I 、
minV  and min P  are the minimum values of current, voltage and power in a 
steady state cycle respectively. max I , maxV  and max P  are the maximum 
values of current, voltage and power in a steady state cycle.     is the rounding 
down symbol. Produce a spatial shape with all elements of 0 and size of 
q q q× × , select each sampling point of the steady-state cycle from the first one 
to the last one, and assign the element of the block at the corresponding posi-
tions of mi , mv  and mp  to 1 to get the new feature with the size of q q q× × . 
The diagram for generating the new features is as Figure 1. 

3. Three-Dimensional Convolutional Neural Network  
(3D-CNN) 

3.1. The Overview of 3D-CNN 

The huge advancements achieved using CNN on 3D objects [15] [16] and other  
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Figure 1. The diagram for generating the new features. 

 
fields, which inspires us to discuss in this orientation. CNN can directly encode 
the spatial structure of the input, that is, the plane and angle of a 3D object asso-
ciated with different directions and positions. In addition, CNN can stack mul-
tiple layers to make hierarchies including complex features about 3D regions and 
ultimately provides a global label for 3D input. Moreover, well-trained CNN 
models can be easily deployed to hardware platforms to perform inference by 
only using a feed-forward propagation which is very effective for classification. 

3.2. 3D CNN Configuration 

In order to train the 3D CNN on our newly produced feature, we have designed 
a network architecture as shown in Figure 2. The input to the network is 
28 28 28× ×  as illustrated in Section 3. There are 2 convolutional layers, 2 max 
pooling layers, 2 fully connected layers and a softmax layer producing the out-
put. Furthermore, we also add a dropout layer and a flatten layer. The filter with 
size of 3 3 3× ×  and stride length of 1 are configured on the convolutional lay-
ers and padding uses “same” strategy. The max pooling with size 2 2 2× ×  and 
stride length of 2 is set on pooling layer. In the configuration, the first convolu-
tional layer produces 12 feature blocks with size 283 and the second convolu-
tional layer produces 24 feature blocks with size 143. Likewise, the first pooling 
layer obtains 12 feature blocks with size 143 and the second pooling layer obtains 
24 feature blocks with size 73. After that we add 2 fully connected layer to pro-
duce 11 units and the final output gives the probability for different classes based 
on the input. An optimization algorithm, adaptive moment estimation (Adam) 
[17], is used for training the 3D-CNN model. The learning rate for the training 
of the network is 0.0001. 

4. Experimental Verification and Result Analysis 
4.1. Evaluation Metrics 

In this paper, the accuracy and confusion matrix are used to evaluate the identi-
fication results. The accuracy rate represents the proportion of the number of  
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Figure 2. Proposed 3D-CNN architecture. 

 
samples correctly classified to the total number of samples in the test set. The 
equation of accuracy is as follow: 

ture

total

n
Accuracy

n
= .                      (6) 

where the totaln  is the total number of samples in the test set and the turen  is 
the number of correctly identified samples. 

4.2. Analysis of Experimental Results 

Confusion matrix is widely used because it can intuitively reflect the effect of 
model classification, the darker the main diagonal color is, the higher the accu-
racy of model recognition is in the figure. The confusion matrix when using dif-
ferent features is shown in Figure 3, where the accuracy of load identification 
using power feature is 0.762, the accuracy of load identification using binary V-I 
trajectory feature is 0.834, and the accuracy of load identification using 3D fea-
ture is 0.949. It is obvious from the figure that the accuracy of load identification 
using three-dimensional features is higher than that of using the other two single 
features. This is because the 3D feature combines the binary V-I trajectory fea-
ture and power feature to make it have higher identifiability. Compared with the 
two single features, it can be seen from the figure that 3D feature makes the 
model have better identification performance as well, and can completely iden-
tify samples 2, 6, 10, and 11. 

In order to further explore the load identification ability of each classification 
algorithm and the effectiveness of the 3D feature, the experiments are conducted 
with different classification models and different load features, and the results 
are shown in Table 2. In this paper, long short-term memory network (LSTM) is 
employed for comparative experiments besides machine learning models such as 
extreme gradient boosting (XGBoost), SVM and K-nearest neighbor (KNN). For 
different load features, in addition to the above three features, the current and 
voltage features are added as well. It is worth mentioning that the machine 
learning model cannot recognize the image feature and spatial feature directly, it 
is necessary to flatten the high-dimensional features into one-dimensional array 
by convolution neural network. As can be seen from Table 2, other classification  
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Figure 3. Confusion matrix when using different features. 
 
Table 2. Identification performance of different classification models for different fea-
tures. 

Models 
Accuracy 

Current Voltage Power Binary V-I trajectory 3D feature 

SVM 0.645 0.674 0.478 0.815 0.824 

KNN 0.743 0.639 0.652 0.795 0.831 

XGBoost 0.817 0.796 0.683 0.827 0.883 

LSTM 0.862 0.854 0.750 0.617 0.603 

Proposed model 0.834 0.826 0.762 0.834 0.949 

 
models show high recognition accuracy for 3D features except LSTM, because 
LSTM has good generalization for one-dimensional sequence features rather 
than being good at processing image and spatial features. Moreover, CNN has 
superior observability for binary V-I trajectory graphs and 3D features, especial-
ly for the latter, the identification accuracy reached the highest 0.949. 

5. Conclusions 

With the development of non-invasive load monitoring and the wide application 
of deep learning, the improvement of load identification model and algorithm is 
promoted. In the paper, a non-intrusive load identification model based on 3D 
convolution neural network in the background of non-intrusive load monitoring 
is proposed. The conclusions are as follows. 
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1) Imbalance samples will cause deviations in model identification accuracy. 
Therefore, an oversampling technique based on SVM SMOTE algorithm is ap-
plied to process the imbalance samples by taking the category with the majority 
samples as the standard. The minority samples are expanded, and the initial 
samples are increased from 1074 to 1925 by the method, which makes load iden-
tification effect of the model better by keeping the minority samples and the 
majority samples in balance.  

2) The binary V-I trajectory feature maps the initial V-I trajectory to a matrix 
with a certain size, which can almost reflect the features of the initial V-I trajec-
tory image. This method not only reduces the data dimension but also discards 
some redundant data, which makes it easier to reflect the discrepancies of cha-
racteristics of different appliances. Power feature is one of important parameters 
that reflects load characteristic. However, the V-I trajectory image cannot reflect 
the power characteristics of the appliances. In order to improve the accuracy of 
load identification, we adopt the power feature P on the basis of the binary V-I 
trajectory feature by adding the third dimension to the binary V-I trajectory im-
age to make it a 3D feature. In order to explore whether 3D features make the 
load identification models more generalized, comparison experiments with other 
one-dimensional features and binary V-I trajectory image are performed, and 
the results showed that the new features have better observability. 

3) CNN has good generalization ability for high-dimensional features. Be-
cause CNN can extract effective characteristics from high-dimensional features 
through its convolution layer and pooling layer, and finally high-dimensional 
features are flattened into one-dimensional features by flatten layer, which is 
beneficial for later load identification. The results show that CNN has better ac-
curacy on high-dimensional features by comparing with other classification 
models. 
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