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Abstract: This paper presents a thermo-mechanical model with phase transition considering changes
in the mechanical properties of the medium. The proposed thermo-mechanical model is described
by a system of partial differential equations for temperature and displacements. In the model, soil
deformations occur due to porosity growth caused by ice and water density differences. A finite-
element approximation of this model on a fine grid is presented. The linearization from the previous
time step is used to handle the nonlinearity of the problem. For reducing the size of the discrete
problem, offline and online multiscale approaches based on the Generalized Multiscale Finite Element
Method (GMsFEM) are proposed. A two-dimensional model problem simulating the heaving process
of heterogeneous soil with a stiff inclusion was considered for testing the mathematical model and
the multiscale approaches. Numerical solutions depict the process of soil heaving caused by changes
in porosity due to the phase transition. The movement of the phase transition interface was observed.
The change of medium properties, including the elastic modulus, was traced and corresponds to the
phase transition interface. The proposed multiscale approaches significantly reduce the size of the
discrete problem while maintaining reasonable accuracy. However, the online multiscale approach
achieves better accuracy than the offline approach with fewer degrees of freedom.

Keywords: permafrost; heterogeneous medium; thermo-mechanics; phase change; online generalized
multiscale finite element method

1. Introduction

Construction and design in areas with permafrost soils require special treatment. The
thawing and freezing of such soils can cause land-surface deformations, which lead to
the destruction of various structures and buildings [1–3]. At the same time, the buildings
themselves can serve as a source of heat and contribute to the thawing of the foundations.
For these reasons, they should be built on pile foundations [4–6]. Another way to stabilize
the soil is artificial ground freezing [7–9]. Mathematical modeling can be of great help at
the design stage or correction of existing faults. It accurately predicts the effects of certain
construction technologies on specific areas of the ground. However, the mathematical
models must consider the problem’s multiphysics nature. Therefore, the development of
accurate multiphysical models (such as thermo-mechanics) and efficient algorithms for
their solution play a vital role.

Many works develop mathematical models and frameworks to analyze soil thawing
and heaving processes. A three-phase finite-element model for porous materials consisting
of the solid skeleton, liquid water, and crystal ice was presented by Zhou and Meschke
in [2]. The resulting model was designed to describe the behavior of water-infiltrated
soft soils upon freezing. In [10,11], Zhang and Michalowski presented a thermo-hydro-
mechanical (THM) model for describing frost heave and thaw settlement. The model uses
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the porosity rate function to simulate the growth of ice lenses as an average growth in
porosity. A coupled THM modeling framework based on liquid saturation degree and
effective stress was derived by Tounsi et al. in [12]. In [13], a thermal-hydraulic-mechanical
coupling model with water–ice phase change was presented by Li et al. A multi-phase-field
poromechanics model simulating the ice lenses’ growth and thaw, as well as the resultant
frozen heave and thaw settlement in multi-constituent frozen soils, was presented by Suh
and Sun in [14]. In [15], Vasilyeva et al. developed a simplified version of the model
presented by Zhang in [10]. In this model, soil deformations occur due to porosity growth
caused by ice and water density differences.

Note that most applied problems of thermo-mechanics with phase change cannot be
solved analytically. Consequently, it is necessary to apply numerical methods to solve
them. One of the most popular methods in the field of thermo-mechanics is the finite
element method [16–18]. This method is also widely used for solving problems with phase
change [19,20]. One of the primary advantages of the finite element method is its suitability
for solving problems set in complex geometric domains. However, the numerical solution
of applied problems of thermo-mechanics with a phase change has several challenges.

It is widely known that mathematical models of problems with phase change are
nonlinear. The coefficients of such models depend on the solution itself. Consequently,
for the numerical solution of such problems, it is necessary to use linearization methods.
Among the most popular linearization methods are the iterative Newton [21] and Picard [22]
methods. Another way is linearization from the previous time step, corresponding to one
Picard iteration. This method can be reasonable because the solution usually does not
change much in one time step in problems with phase change.

It is worth noting that there are often various heterogeneities in applied problems.
These can be both geometric heterogeneities and soil heterogeneities. For accurate numeri-
cal simulation of the processes occurring in heterogeneous media, it is necessary to use very
fine grids. They, in turn, lead to a significant increase in the size of the discrete problem;
numerical homogenization and multiscale methods are widely used to reduce it [23–25].
These techniques make it possible to solve heterogeneous problems on coarse grids with
reasonable accuracy.

The Generalized Multiscale Finite Element Method (GMsFEM) developed by Efendiev
et al. in [25] has demonstrated its high efficiency for various problems in heterogeneous
media with high contrast. The GMsFEM has been implemented for the pore-scale simu-
lation of Li-ion batteries by Vasilyeva et al. in [26], for the Brinkman equation by Galvis
et al. in [27], for shale gas transport by Akkutlu et al. in [28], for the scattering problem
by Kalachikova et al. in [29], for a strain-limiting nonlinear elasticity model by Fu et
al. in [30], and for transport and flow problems in perforated domains by Chung et al.
in [31]. The method’s main idea is to construct multiscale basis functions by solving local
spectral problems. These basis functions take into account different heterogeneities of the
medium. Moreover, it is possible to use more than one basis function in a coarse grid node.
This method has been successfully implemented for problems with phase change, e.g., by
Vasilyeva et al. in [32] and Ammosov et al. in [33].

However, to account for changes in the properties of the medium caused by phase
transition, it is necessary to update the information while solving the problem. The Residual-
Driven Online Generalized Multiscale Finite Element Method has been developed by
Chung et al. in [34] to consider such nonlinear features. It has already been successfully
implemented for the heat transfer problem with phase change by Spiridonov et al. in [35]
and the poroelasticity problem without phase change by Tyrylgin et al. in [36]. This paper
implemented the online approach for the thermo-mechanical problem with phase change.

The aim of this paper was to develop an efficient online multiscale approach for a
thermo-mechanical model with phase change. In this work, a modified version of the
thermo-mechanical model presented by Vasilyeva et al. in [15] was considered. As in the
previous thermo-mechanical model, in the modified model, the mechanical deformations
of the medium result from changes in porosity caused by phase transition. However,
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the proposed modified version also considers changes in the mechanical properties of a
medium. Note that such changes can play a significant role, since the mechanical properties
of frozen soil may be very different from those of thawed soil. The mathematical model
is described by a system of differential equations for temperature and displacements. For
this model, a finite-element approximation was developed on a fine grid. For handling the
nonlinearity of the problem, the linearization from the previous time step was used.

Two multiscale approaches are presented to reduce the size of the discrete problem.
They are based on the Generalized Multiscale Finite Element Method (GMsFEM). In the first
approach, multiscale basis functions are constructed without considering the mathematical
model’s nonlinearity. This approach was applied to the previous thermo-mechanical model
by Ammosov et al. in [33]. On the other hand, the second approach uses a residual-driven
online enrichment of the multiscale space while solving the problem. Such enrichment
allows us to take into account changes in the mechanical and thermal properties of the
medium caused by the phase transition.

To verify the model and the multiscale approaches, a two-dimensional model problem
was considered. This problem simulates the heaving process of heterogeneous soil with a
stiff inclusion caused by phase change. The numerical results show that the solution of the
problem corresponds to the simulated process. The multiscale approaches approximate the
fine-grid solution well. However, the online approach has better accuracy.

The paper’s novelty is that the Residual-Driven Online Generalized Multiscale Finite
Element Method was developed for the proposed thermo-mechanical model. This online
multiscale method has not yet been implemented for thermo-mechanical models with
phase change. However, the online enrichment of the multiscale space can be valuable for
considering the nonlinear nature of phase change.

This paper has the following structure. Section 2 briefly outlines the concepts on
which the model is based. In Section 3, the thermo-mechanical model with phase change
is presented. Section 4 describes the finite-element approximation on a fine grid. In
Section 5, an offline multiscale model reduction approach is presented. Section 6 describes
an algorithm for the online enrichment of the offline approach. In Section 7, the numerical
results are presented. Finally, Section 8 summarizes the work.

2. Preliminaries

This section aims to present the fundamental concepts upon which the thermo-
mechanical model with phase change is based. Functions of water content, porosity,
and fraction volumes of solid, liquid, and ice are introduced. All of them were used in the
thermo-mechanical model. One can find more detailed descriptions and derivations in the
work of Vasilyeva et al. [15].

First, the water content function w(T) and derivative w′(T) need to be introduced;

w(T) =

{
w, T ≥ Tf ,
w exp(α[T − Tf ]), T < Tf

,

w′(T) =
∂w(T)

∂T
=

{
0, T ≥ Tf ,
αw exp(α[T − Tf ]), T < Tf

,

where w is the maximum water content, T is the temperature, Tf is the freezing temperature,
and α is a model parameter.

Next, the porosity function φ(T) is derived using w(T):

φ(T) =
w(T) + (w− w(T)) ρw

ρi
ρw
ρs

+ w(T) + (w− w(T)) ρw
ρi

, (1)

where ρw, ρi, and ρs are water, ice, and solid densities, respectively.
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The porosity of the thawed soil φ arises when T ≥ Tf . Note that one can define w
using φ

w =

(
φ

1− φ

)
ρw

ρs
. (2)

Finally, using w(T) and φ(T), the water, ice, and solid fraction volumes Θw(T), Θi(T),
and Θs(T) are derived as follows:

Θw(T) = w(T)
ρs

ρw
(1− φ(T)), Θi(T) = (w− w(T))

ρs

ρi
(1− φ(T)),

Θs(T) = 1− φ(T).
(3)

Note Θw(T) + Θi(T) + Θs(T) = 1 holds in the case of a fully saturated porous medium.

3. Mathematical Model

In this section, a modified version of the thermo-mechanical model proposed by
Vasilyeva et al. in [15] is presented. As in the previous model, the mechanical deformations
of the medium result from changes in porosity caused by phase transition. However, the
changes in the medium’s mechanical properties are also considered in this modification.
The section presents a system of equations for temperature and displacements and describes
boundary conditions. The methods of calculation of nonlinear coefficients are considered.

The thermo-mechanical model with phase is described by the following system of
equations for temperature T and displacements u in Ω ⊂ R2

[
cρ(T) + D(T)w′(T)

] ∂T
∂t
−∇ · [k(T)∇T] = 0, x ∈ Ω, t ∈ (0, tmax],

∇[µ(T)∇du] +∇([λ(T) + µ(T)]∇ · du) +∇[β(T) dφ(T)] = 0, x ∈ Ω, t ∈ (0, tmax].
(4)

The following formula is used for calculating the volumetric heat capacity cρ(T):

cρ(T) = Θs(T)csρs + Θi(T)ciρi + Θw(T)cwρw, (5)

where cs, ci, and cw denote solid, ice, and water specific heat capacities, respectively.
The heat conductivity k(T) is computed using a logarithmic law as proposed by

Michalowski et al. in [37]:
k(T) = kΘs(T)

s kΘi(T)
i kΘw(T)

w , (6)

where ks, ki, and kw denote solid, ice, and water heat conductivity coefficients, respectively.
In the displacements equation, λ(T) and µ(T) denote Lamé parameters that can be

calculated using Poisson’s ratio ν and the elastic modulus E(T):

λ(T) =
νE(T)

(1 + ν)(1− 2ν)
, µ(T) =

E(T)
2(1 + ν)

.

One can see that the elastic modulus E depends on the temperature T. Therefore,
changes in the elastic properties of the medium caused by phase transition are considered.
The following formula is used for expressing the elastic modulus E(T):

E(T) =
Ei[w̄− w(T)] ρs

ρi
+ Es

[w̄− w(T)] ρs
ρi
+ 1

, (7)

where Ei and Es are ice and solid elastic modules, respectively.
Note that β(T) represents the thermal expansion caused by porosity change:

β(T) =
3λ(T) + 2µ(T)

3(1− φ(T))
. (8)
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Then, the heat of phase change D(T) can be expressed as follows:

D(T) = Lρs

[
(1− φ(T)) + (w− w(T))

∂φ(T)
∂w(T)

]
, (9)

where L is the latent heat of fusion of water per unit mass.
One can see that the presented mathematical model incorporates essential soil-specific

properties such as the volumetric heat capacity cρ(T), heat conductivity k(T), elastic
modulus E(T), porosity φ(T), water content w(T), and fraction volumes of solid, ice, and
water Θs(T), Θi(T), and Θw(T), respectively. For example, the porosity φ(T) is expressed
through the water content w(T) using the Formula (1). While the ice, water, and solid
fraction volumes Θi(T), Θw(T), and Θs(T) are expressed through the porosity φ(T) and
water content w(T) as presented in (3). Then, the volumetric heat capacity cρ(T) and
heat conductivity k(T) depend on the water, ice, and solid fraction volumetric Θw(T),
Θi(T), Θs(T) as in (5) and (6), respectively. At the same time, the elastic modulus E(T) is
expressed through the water content w(T) using the Formula (7). Furthermore, the thermal
expansion β(T) depends on the porosity φ(T) as in (8). Finally, the heat of phase change
D(T) depends on the porosity φ(T) and water content w(T) as in (9).

Finally, the system of equations (4) is supplemented with the following initial conditions:

T = T0, u = u0, x ∈ Ω, t = 0 (10)

and boundary conditions

− k(T)∇T · n = γ(T − Tenv), x ∈ ΓT , −k(T)∇T · n = 0, x ∈ ∂Ω \ ΓT ,

u1 = 0, (σ(u) · n)2 = 0, x ∈ ΓL ∪ ΓR, u2 = 0, (σ(u) · n)1 = 0, x ∈ ΓB,

σ(u) · n = σp, x ∈ ΓM, σ(u) · n = 0, x ∈ ΓT \ ΓM,

(11)

where n is the outward unit normal vector to ∂Ω; ΓL, ΓR, ΓB, and ΓT denote the left, right,
bottom, and top boundaries of Ω and ΓM ⊂ ΓT (see Figure 1); σ(u) is a stress tensor defined
as follows:

σ(u) = 2µ(T)ε(u) + λ(T)tr(ε(u))I , ε(u) =
1
2
(∇u + (∇u)T).

Here, ε(u) is a deformation tensor and I is a unit matrix.

Figure 1. Illustration of the computational domain Ω with boundaries.

4. Fine-Grid Approximation

This section presents an approximation of the thermo-mechanical model on a fine grid.
The fine-grid solution is accurate and can be considered as the reference one. However,
calculations on a fine grid require huge computational resources.
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In the section, the variational formulation of the problem is first described. For this
purpose, temporal and spatial approximations were performed using a finite difference
method and a finite element method, respectively. Then, the discretization on a fine grid
and the algorithm for solving the discrete problem are presented.

4.1. Variational Formulation

For performing temporal approximation, the time derivative in the heat equation is
replaced with the following finite difference:

∂T
∂t
≈ Tn+1 − Tn

τ
,

where n = 0, . . . , Nt − 1 is a time step number, Nt is a time steps count, τ = tmax/Nt is
a time step size. Therefore, our non-stationary problem is transformed into a series of
stationary problems.

Next, let Tn+1 ∈ Q and un+1 ∈ V for all time steps, where the function spaces are
defined as follows:

Q = H1(Ω), V = {v ∈ [H1(Ω)]2 : v1(x) = 0, x ∈ ΓL ∪ ΓR and v2(x) = 0, x ∈ ΓB},

where H1 is Sobolev space. Then, the heat and mechanics equations are multiplied by
arbitrary test functions q ∈ Q and v ∈ V, respectively. The obtained equations are
integrated using the integration by parts formula and considering (11). As a result, the
following variational formulation is obtained.

For n = 0, . . . , Nt − 1, find Tn+1 ∈ Q and un+1 ∈ V such that

s(
Tn+1 − Tn

τ
, q) + aT(Tn+1, q) = lT(q), ∀q ∈ Q,

au(un+1 − un, v) = lu(v) + b(Tn+1 − Tn, v), ∀v ∈ V,

where the bilinear and linear forms are defined as follows:

s(T, q) =
∫

Ω

[
(cρ)n + (Dw′)n]Tqdx,

aT(T, q) =
∫

Ω
kn∇T · ∇qdx +

∫
ΓT

γTqds, lT(q) =
∫

ΓT

γTenvqds,

au(u, v) =
∫

Ω
σ(u) : ε(v)dx, lu(v) =

∫
ΓM

σp · vds, b(T, v) =
∫

Ω
[β(T)φ(T)I ] : ε(v)dx.

Note that the implicit time scheme is used here. For linearizing the heat equation, its
coefficients are taken from the previous time step. Since displacements do not affect the
temperature in our model, one can solve the heat and mechanics equations sequentially.

4.2. Discrete Formulation

Next, spatial discretization needs to be performed. First, a fine grid T h consisting

of finite elements Kj is defined. Then, a discretized computational domain Ωh =
⋃Nh

c
j=1 Kj

is introduced, where Nh
c is a count of finite elements. Finite-dimensional function spaces

Qh ⊂ Q and Vh ⊂ V are defined on Ωh. In the discrete formulation, Tn+1 ∈ Qh and
un+1 ∈ Vh are sought for each time step that can be represented as follows:

Tn+1 =
Nh

v

∑
j=1

Tn+1
h,j φj, un+1 =

2Nh
v

∑
j=1

un+1
h,j Φj,

where φj and Φj are standard linear basis functions, Tn+1
h,j and un+1

h,j are nodal values vectors
of temperature and displacements.
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One can write the discrete problem in a matrix-vector form as follows. For n =
0, . . . , Nt − 1:

1. Find the vector of temperature nodal values Tn+1
h such that

S
Tn+1

h − Tn
h

τ
+ ATTn+1

h = LT ,

where the matrices and vectors are as follows:

S = [sij], sij = s(φi, φj),

AT = [aT,ij], aT,ij = aT(φi, φj), LT = {lT,j}, lT,j = lT(φj).

2. Find the vector of displacements nodal values un+1
h such that

Au(un+1
h − un

h) = Lu + Bn+1 − Bn,

where the matrices and vectors are defined as follows:

Au = [au,ij], au,ij = au(Φi, Φj), Lu = {lu,j}, lu,j = lu(Φj),

Bn+1 = {bn+1
j }, bn+1

j = b(Tn+1, Φj), Bn = {bn
j }, bn

j = b(Tn, Φj).

The resulting heat and mechanics discrete systems have Nh
v and 2Nh

v degrees of
freedom, respectively. In the next two sections, multiscale strategies that can reduce the
sizes of the discrete problems are presented.

5. Offline Coarse-Grid Approximation

This section presents an offline multiscale model reduction technique based on the
GMsFEM for the thermo-mechanical model. This multiscale approach can significantly
decrease computational costs, but it does not consider the problem’s nonlinearity and
can be inaccurate. In the section, a general description of GMsFEM is given. Then, the
construction of multiscale basis functions for temperature and displacements is described.
Finally, an algorithm for solving the problem on a coarse grid using the computed basis
functions is given.

The Generalized Multiscale Finite Element Method (GMsFEM) is a general approach
for performing multiscale simulations in complex heterogeneous media. The main idea of
the GMsFEM is to construct multiscale basis functions via solving local spectral problems.
Such basis functions can handle various fine-scale heterogeneities of the media and allow us
to solve problems on a coarse grid. Moreover, one can use more than one basis function per
coarse-grid element. This feature is essential for solving complex problems in heterogeneous
media with high contrast. The resulting computational macroscopic model has similarities
with multicontinuum models since it involves multiple macroscopic parameters.

One can divide the algorithm of the GMsFEM into offline and online stages. In the
offline stage, our multiscale basis functions that can consider the heterogeneities of the
medium are constructed. The basis functions are computed in local domains ωi of a coarse
grid T H . The local domain ωi consists of coarse-grid cells Kj containing a coarse-grid node
xi, i.e., ωi = {Kj ∈ T H : xi ∈ Kj} (see Figure 2). The offline stage has the following steps.

Offline Stage

1. Generate the coarse grid T H .
2. For each local domain ωi, compute snapshot functions and construct a snapshot space.
3. For each local domain ωi, compute multiscale basis functions via solving local spectral

problems on the snapshot space and construct a multiscale space.
4. Build a projection matrix into the multiscale space.
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Figure 2. Coarse grid T H , coarse cell Kj, and local domain ωi.

In the online stage, our fine-grid system is projected to the coarse grid using the ob-
tained projection matrix and solves the coarse-grid problem. Note that one can reconstruct
the solution on the fine grid. The online stage can be divided into the following steps.

Online Stage

1. For the current time step, project the fine-grid system to the coarse grid using the
multiscale projection matrix.

2. Solve the coarse-grid problem.
3. Reconstruct the solution on the fine grid.
4. Move to the next time step.

Since the heat and mechanics problems are solved sequentially, multiscale basis func-
tions for temperature and displacements are constructed separately. In the next subsection,
the basis functions construction algorithms for both fields are presented. It is supposed
that the coarse grid and local domains have been constructed. Therefore, the algorithm
starts with the snapshot functions calculation. Note that, wherever possible, the subscript i
in the notation of the local domain will be omitted for simplicity of presentation.

5.1. Construction of Multiscale Basis Functions for Temperature

• Snapshot Functions.

To construct snapshot functions for temperature, one needs to solve the following
local problems. For each local domain ω, find ψω

j such that

∫
ω

k(T0)∇ψω
j · ∇qdx = 0,

with the following Dirichlet boundary conditions

ψω
j = δh

j (x), x ∈ ∂ω,

where δh
j (x) = δj,k, ∀j, k ∈ Jh(ω), and Jh(ω) is a set of all fine-grid nodes on ∂ω. Note that

one has to solve N∂ω local problems, where N∂ω denotes a count of the fine-grid nodes on
∂ω. After that, a snapshot space and a snapshot projection matrix are constructed for each
local domain

Qsnap(ω) = span{ψω
j : 1 ≤ j ≤ N∂ω},

Rω
T,snap = (ψω

1 , . . . , ψ
ω,snap
N∂ω ).

• Multiscale basis functions.

The obtained snapshot projection matrices are used for constructing multiscale basis
functions. One needs to solve the following local spectral problems. For each local domain
ω, find ψ̃ω

k such that
ÃTψ̃ω

k = λkS̃Tψ̃ω
k ,
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where
ÃT = (Rω

T,snap)
T AT Rω

T,snap, S̃T = (Rω
T,snap)

TST Rω
T,snap,

AT = [aT,ij], aT,ij =
∫

ω
k(T0)∇φi · ∇φjdx, ST = [sT,ij], sT,ij =

∫
ω

k(T0)φiφjdx.

The resulting eigenvalues are sorted in ascending order and select the eigenvectors
corresponding to the first Mo f f eigenvectors. Then, these eigenvectors are projected back
to the original space as follows:

ψ̄ω
k = Rω

T,snapψ̃ω
k .

To obtain conforming basis functions, the resulting eigenvectors are multiplied by a
partition of unity function χi. This function is linear and continuous in ωi, equal to 1 in xi
and 0 in other coarse-grid nodes.

ψ
o f f
i,k = χiψ̄

ωi
k , 1 ≤ i ≤ NH

v , 1 ≤ k ≤ Mo f f ,

where NH
v is a count of coarse-grid nodes.

Finally, an offline multiscale space and its projection matrix are constructed as follows:

Qo f f = span{ψo f f
i,k : 1 ≤ i ≤ NH

v and 1 ≤ k ≤ Mo f f },

Ro f f
T = (ψ

o f f
1,1 , . . . , ψ

o f f
1,Mo f f

, . . . , ψ
o f f
NH

v ,1
, . . . , ψ

o f f
NH

v ,Mo f f
).

Examples of the obtained multiscale basis functions are presented in Figure 3.

Figure 3. An example of the solid heat conductivity coefficient ks and the first 4 offline multiscale
basis functions for temperature (from left to right) in the local domain ωi.

5.2. Construction of Multiscale Basis Functions for Displacements

• Snapshot functions.

As for temperature, one needs to solve local problems to obtain snapshot functions.
However, the local problems should be solved for each direction of displacements. For
each local domain ω and l = 1, 2, find Ψω,l

j such that

∫
ω

σ(Ψω,l
j ) : ε(v)dx = 0,

with Dirichlet boundary conditions

Ψω,l
j = δ̄h

j (x), x ∈ ∂ω,
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where δ̄h
j (x) = δj,kel , ∀j, k ∈ Jh(ωi), el is the l-th column of the identity matrix I2. Therefore,

one has to solve 2N∂ω local problems. Then, a snapshot function space and its projection
matrix are built for each local domain ω and direction l = 1, 2 as follows:

V l
snap(ω) = span{Ψω,l

j : 1 <= j <= N∂ω},

Rω,l
u,snap = (Ψω,l

1 , . . . , Ψω,l
N∂ω ).

• Multiscale basis functions.

Multiscale basis functions are also constructed separately for each direction of dis-
placements. For this purpose, one needs to solve the following local spectral problems. For
each local domain ω and l = 1, 2, find Ψ̃ω,l

k such that

Ãl
uΨ̃ω,l

k = λl
kS̃l

uΨ̃ω,l
k ,

where
Ãl

u = (Rω,l
u,snap)

T AuRω,l
u,snap, S̃l

u = (Rω,l
u,snap)

TST Rω,l
u,snap,

Au = {au,ij}, au,ij =
∫

ω
σ(Φi) : ε(Φj)dx,

Su = {su,ij}, su,ij =
∫

ω
(λ(T0) + 2µ(T0))Φi ·Φjdx.

Next, the resulting eigenvalues are sorted in ascending order and select the eigenvec-
tors corresponding to the first Mo f f eigenvalues. As for temperature, the eigenvectors are
projected back using the snapshot projection matrix,

Ψ̄ω,l
k = Rω,l

u,snapΨ̃ω,l
k .

Then, the resulting eigenvectors are multiplied by the partition of unity function χi to
obtain conforming basis functions,

Ψo f f ,l
i,k = χiΨ̄

ωi ,l
k , 1 ≤ i ≤ NH

v , 1 ≤ k ≤ Mo f f , 1 ≤ l ≤ 2.

Finally, the multiscale space and its projection matrix are built as follows:

Vo f f = span{Ψo f f ,l
i,k : 1 ≤ i ≤ NH

v , 1 ≤ k ≤ Mo f f , 1 ≤ l ≤ 2},

Ro f f
u = (Ψo f f ,1

1,1 , . . . , Ψo f f ,2
NH

v ,Mo f f
).

Figures 4 and 5 present examples of the obtained multiscale basis functions in x1 and
x2 directions, respectively.

5.3. Coarse-Grid System

Using the resulting projection matrices for temperature and displacements, one can
project the discrete system from a fine grid to a coarse grid. Moreover, the solution can be
projected back to the fine grid. Let us take a closer look at all these procedures.

One can write the discrete problems on the coarse grid in the following way. For
n = 0, . . . , Nt − 1,

1. Find the vector of temperature nodal values Tn+1
H such that

SH
Tn+1

H − Tn
H

τ
+ AT,HTn+1

H = LT,H ,
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Figure 4. An example of the solid elastic modulus Es (left) and the first 4 offline multiscale basis
functions for displacement in x1 direction (right) in the local domain ωi.

Figure 5. An example of the solid elastic modulus Es (left) and the first 4 offline multiscale basis
functions for displacement in x2 direction (right) in the local domain ωi.

where the matrices and vectors are as follows:

SH = (Ro f f
T )TSRo f f

T , AT,H = (Ro f f
T )T AT Ro f f

T ,

LT,H = (Ro f f
T )T LT , Tn

H = (Ro f f
T )TTn

h .

2. Find the vector of displacements nodal values un+1
H such that

Au,H(un+1
H − un

H) = Lu,H + Bn+1
H − Bn

H ,

where the matrix and vectors are obtained as follows:

Au,H = (Ro f f
u )T AuRo f f

u , Bn
H = (Ro f f

u )T Bn, Lu,H = (Ro f f
u )T Lu, un

H = (Ro f f
u )Tun

h .
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One can reconstruct the fine-grid solutions as follows:

Tn+1
o f f = Ro f f

T Tn+1
H , un+1

o f f = Ro f f
u un+1

H .

As mentioned before, this multiscale model reduction approach does not consider the
nonlinearity caused by phase change. For this purpose, an online enrichment technique
will be considered in the next section.

6. Online Enrichment of Offline Coarse-Grid Approximation

The thermo-mechanical model with phase change is nonlinear because the coefficients
depend on temperature. The multiscale method described in the previous section does
not account for the coefficient changes, which can be a source of errors. In this section, a
residual-driven online multiscale approach is presented that can consider media changes.

The section begins with a general description of the online multiscale approach. Then,
the constructions of online multiscale basis functions for temperature and displacements
are presented. Finally, an algorithm for solving the problem using the online multiscale
approach is given.

The residual-driven online multiscale approach can update information about the
medium while solving the problem. For this purpose, it computes additional online
multiscale basis functions and enriches the offline space. Since calculating these basis
functions for each time step can be expensive, it is preferable to update online basis
functions every five to ten time steps. One can also enrich the offline space adaptively
for some local domains with a large residual, as described by Chung et al. in [34,38]. The
online enrichment algorithm can be outlined as follows:

Online Stage

1. Generate the coarse-grid system for the current time step.
2. Solve the coarse-grid system.
3. Compute online multiscale basis functions, enrich the offline multiscale space, repeat-

edly solve the problem for the current time step.
4. Move to the next time step.

Since temperature and mechanics problems are solved sequentially, their online multi-
scale basis functions are computed separately.

• Online multiscale basis functions for temperature.

One has to solve the following local problems for calculating online multiscale basis
functions for temperature. For each local domain ω, find ψω

k such that

s(
ψω

k
τ

, q) + aT(ψ
ω
k , q) = rk−1

T (q), x ∈ ω,

ψω
k = 0, x ∈ ∂ω \ γT .

Here, γT = ∂ω ∩ ΓT , and the residual term rk
T(q) is defined as follows:

rk
T(q) = lT(q) + s(

Tn
ms
τ

, q)− s(
Tk

ms
τ

, q)− aT(Tk
ms, q),

where the subscript ms denotes the multiscale solution.
Next, the obtained functions are multiplied by the partition of unity functions,

ψon
i,k = χiψ

ωi
k , 1 ≤ i ≤ NH

v .

Finally, the multiscale space is enriched using the obtained online basis functions,

Qms = span{ψo f f
i,j , ψon

i,k : 1 ≤ i ≤ NH
v , 1 ≤ j ≤ Mo f f , 1 ≤ k ≤ Mon},
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where k is the number of online iterations for the current time step.

• Online multiscale basis functions for displacements.

As for temperature, one has to solve the local problems for calculating online multiscale
basis functions. For each local domain ω, find Ψω

k such that

au(Ψω
k , v) = rk−1

u (v), x ∈ ω,

Ψω
k = 0, x ∈ ∂ω \ γM,

where γM = ∂ω ∩ ΓM, and the residual term rk
u(v) has the following form:

rk
u(v) = lu(v) + b(Tn+1

ms − Tn
ms, v) + au(un

ms, v)− au(uk
ms, v).

For obtaining conforming basis functions, the resulting functions are multiplied by
the partition of unity functions as follows:

Ψon
i,k = χiΨ

ωi
k , 1 ≤ i ≤ NH

v .

Next, these basis functions are multiplied by el to obtain the online basis functions
corresponding to each direction,

Ψl,on
i,k = elΨ

on
i,k , 1 ≤ i ≤ NH

v , 1 ≤ l ≤ 2.

At the end, the multiscale space is enriched with these online basis functions,

Vms = span{Ψl,o f f
i,j , Ψl,on

i,k : 1 ≤ i ≤ NH
v , 1 ≤ j ≤ Mo f f , 1 ≤ k ≤ Mon, 1 ≤ l ≤ 2},

where k is the number of online iterations for the current time step. Examples of the online
basis functions for temperature and displacements are depicted in Figure 6. Finally, the
detailed algorithm of our multiscale approach with online residual-driven enrichment is
presented in the next paragraph.

Figure 6. An example of the solid heat conductivity ks, elastic modulus Es, and online multiscale
basis functions for temperature and displacements (from left to right) in two local domains (from top
to bottom).

• Multiscale algorithm with online enrichment.

One can define the following steps of the proposed multiscale algorithm with online
residual-driven enrichment. For each time step n = 0, . . . , Nt − 1,
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1. Solve the heat problem.

(a) Define the projection matrix RT = Rn
T for the current time step n, where

RT = Ro f f
T if n = 0.

(b) Build and solve the coarse-grid system at the current time step.

i. If one wants to add or update online basis functions for the current time
step, one needs to solve the following problems. For k = 1, . . . , Mon, solve

Sk−1
H

Tk
H − Tn

H
τ

+ Ak−1
T,H Tk

H = Lk−1
T,H ,

where the matrices and vectors follow

Sk
H = (Rk

T)
TSRk

T , Ak
T,H = (Rk

T)
T AT Rk

T , Lk
T,H = (Rk

T)
T LT ,

Rk
T = (ψ

o f f
1,1 , . . . , ψ

o f f
NH

v ,Mo f f
, ψon

1,1, . . . , ψon
NH

v ,k).

Here, Rk
T = Ro f f

T for k = 0. The online basis functions ψon
i,k are computed

using the solution from the previous iteration of k. After all online
iterations, one sets R = RMon

T .
ii. Solve

SH
Tn+1

H − Tn
H

τ
+ AT,HTn+1

H = LT,H ,

where

SH = (RT)
TSRT , AT,H = (RT)

T AT RT , LT,H = (RT)
T LT .

2. Solve the mechanics problem.

(a) Define the projection matrix Ru = Rn
u for the current time step n, where

Ru = Ro f f
u if n = 0.

(b) Build and solve the coarse-grid system at the current time step.

i. If one wants to add or update online basis functions for the current
time step, one solves the following problems. For k = 1, . . . , Mon, solve

Ak−1
u,H (uk

H − un
H) = Lk−1

u,H + Bn+1,k−1
H − Bn,k−1

H ,

where

Ak
u,H = (Rk

u)
T AuRk

u, Bk,n
H = (Rk

u)
T BnRk

u, Lk
u,H = (Rk

u)
T Lu,

Rk
u = (Ψo f f ,1

1,1 , . . . , Ψo f f ,2
NH

v ,Mo f f
, Ψon,1

1,1 , . . . , Ψon,2
NH

v ,k
),

where Rk
u = Ro f f

u for k = 0. The online basis functions Ψon
i,k are calcu-

lated using the solution from the previous iteration of k. After all online
iterations, one sets R = RMon

u .
ii. Solve

Au,H(un+1
H − un

H) = Lu,H + Bn+1
H − Bn

H ,

where

Au,H = (Ru)
T AuRu, Bn

H = (Ru)
T BnRu, Lu,H = (Ru)

T Lu.

3. Move to the next time step.

Next, the numerical results of the proposed multiscale model reduction approaches
will be presented.
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7. Numerical Results

This section presents numerical results to test the thermo-mechanical model and
the proposed multiscale approaches. A two-dimensional model problem simulating the
heaving process of heterogeneous soil with a stiff inclusion was considered. First, the
numerical solution of the problem on fine and coarse grids was carried out, and the
distributions of solutions are given. Then, the relative errors were calculated to check the
efficiency of the multiscale approaches. Finally, the relative errors were plotted over time.

The numerical implementation of the fine-grid and multiscale methods was based on
the FEniCS computational package [22]. For visualizing the results, the program ParaView
was used [39]. The graphical package Matplotlib was used to visualize the error plots [40].

The two-dimensional model problem defined in Ω = [0, 6]× [0, 6] m2 was considered.
As a fine grid, a uniform grid with 10,201 vertices and 20,000 triangular cells was used.
The coarse grid consisted of 121 vertices and 100 rectangular cells. Figure 7 depicts the
computational domain and grids.

Figure 7. Computational domain and grids (from left to right). The fine grid is blue, the coarse grid
is black.

The model problem was simulated for tmax = 2, 592, 000 s with 50 time steps. A het-
erogeneous soil with a stiff inclusion was considered. For this purpose, the heterogeneous
coefficients cs, ρs, ks, φ̄, and Es were used (see Figure 8). Poisson’s ratio was set as ν = 0.3,
and the remaining coefficients were as follows:

• Ice properties: Ei = 9.5 · 109 Pa, ki = 2.24 W ·m−1 · ◦C−1, ci = 2000 J · kg−1 · ◦C−1, and
ρi = 917 kg ·m−3.

• Water properties: kw = 0.56 W ·m−1 · ◦C−1, cw = 4180 J · kg−1 · ◦C−1, and ρw =

1000 kg ·m−3.
• Phase change properties: L = 333,000 J · kg−1, Tf = 0 ◦C, and α = (0.3)−1 ◦C−1.

For initial conditions, T0 = 2 ◦C and u0 = (0, 0)T m were set. The boundary conditions
(11) were used with γ = 14 W ·m−2 · ◦C−1, Tenv = −15 ◦C, and σp = (0,−103)T Pa. The
corresponding boundaries of the domain are depicted in Figure 7.

Figure 8. Distributions of cs, ρs, ks, φ̄, and Es.
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In all the figures of the numerical results, the online multiscale approach results are
depicted with an enrichment periodicity equal to five. Figure 9 presents temperature
distributions at different points in time. From top to bottom, a fine-grid solution, multiscale
solutions using four offline basis functions and using two online and four offline basis
functions are depicted, respectively. In the pictures, the white line is the isoline of 0, which
corresponds to the phase change temperature. As one can see, all the pictures are very
similar, which indicates that our multiscale approaches approximate the fine-grid solution
well. However, the isoline of 0 is smoother in the multiscale solution with online enrichment
than without it.

(a) Reference solution.

(b) Multiscale solution using 4 offline basis functions.

(c) Multiscale solution using 4 offline basis functions and 2 online basis functions.

Figure 9. Distributions of T at tn, n = 10, 30, 50 (from left to right).

In terms of the simulated process, the solutions behave correctly. Initially, the ground
is in a thawed state. Then, freezing begins at the top boundary caused by interaction with
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the low environmental temperature. This leads to a phase change process. One can see that
the isoline of 0 becomes lower the longer the freezing takes place. The ground-freezing
process is heterogeneous, especially in the area of stiff inclusion.

Figure 10 presents distributions of displacements in the x1 and x2 directions and the
magnitude of displacements (from left to right) at the last moment. It depicts the fine-grid
solution, the multiscale solutions using four offline basis functions and using two online
and four offline basis functions (from top to bottom). One can see that all the results are
similar to those in the temperature case. However, the differences are more noticeable in
the results of the offline multiscale solution.

(a) Reference solution.

(b) Multiscale solution using 4 offline basis functions.

(c) Multiscale solution using 4 offline basis functions and 2 online basis functions.

Figure 10. Distributions of u1, u2, and |u| (from left to right) at the final time.
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Note that a warp scale factor of two is used to show the medium’s deformations more
clearly. One can observe that the primary displacement occurs in the x2 direction; at the
same time, the closer to the top boundary it is, the stronger the displacements are. This
phenomenon is explained by the fact that deformations occur due to changes in porosity
caused by phase transition. As expected, the displacements in the stiff inclusion region
are much smaller than in the rest of the domain. In general, the soil heaving process is
displayed correctly.

Figure 11 shows the distributions of porosity, heat conductivity, and elastic modulus
(from left to right) at the last moment. Only the coefficients of the fine-grid solution are
depicted here since the errors of the coefficients of the multiscale solutions are caused by the
temperature errors. The distributions of the fine-grid coefficients are presented to observe
the influence of phase change on them. One can see that all the coefficients changed because
of the phase transition, but the most visible change occurred with the elastic modulus. This
phenomenon is because the mechanical properties of ice are very different from those of
the soil. Therefore, one can clearly trace the hardening process. Note that the interface of
changes in mechanical properties corresponds to the isoline of 0 (see Figure 9).

Figure 11. Distributions of φ, k, and E (from left to right) of the reference solution at the final time.

Next, let us consider the errors of the proposed multiscale approaches. The fine-grid
solution was used as the reference one. Two types of error were considered: L2 and energy
error. The first shows the error of the solution fields themselves, and the second reflects
the error in calculating the gradients. The following formulas were used to calculate the
relative L2 errors:

εT
L2

=

√∫
Ω(T − Tms)2dx∫

Ω T2dx
× 100%, εu

L2
=

√∫
Ω(u− ums)2dx∫

Ω u2dx
× 100%,

and the relative energy errors

εT
e =

√∫
Ω aT(T − Tms, T − Tms)dx∫

Ω aT(T, T)dx
× 100%, εu

e =

√∫
Ω au(u− ums, u− ums)dx∫

Ω au(u, u)dx
× 100%,

where the subscript ms corresponds to a multiscale solution (offline or online), and the
fields without subscripts denote the fine-grid solutions.

Table 1 contains the relative L2 and energy errors at the last moment of time for all
fields. The left part corresponds to the update of the online basis functions every five time
steps. The right part shows the errors when updating every 10 time steps. The table contains
errors for different numbers of offline and online basis functions per coarse-grid node.

Let us consider the results without using online basis functions. One can see that the
errors decrease as the number of basis functions increases. Thus, one observes convergence
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on basis functions. In general, the errors are minor, especially for temperature. For example,
when using 12 basis functions, the L2 error is less than 1.5%, and the energy error is slightly
more than 2.5%; however, the errors of displacements are noticeably larger. For example,
for the same number of basis functions, the L2 error is about 4%, and the energy error
is more than 5%. This phenomenon is explained by the fact that phase change strongly
influences the mechanical properties of the medium.

Next, let us consider the results when using online basis functions updated every five
time steps. Adding one or two online basis functions can significantly improve accuracy.
For example, if one adds two online basis functions to four offline basis functions, one
obtains the following results—the relative L2 error decreases from about 3.6% to 0.8% for
temperature. At the same time, its relative energy error decreases from about 7% to 1.4%.
For displacements, the L2 error drops from about 11.2% to 3.8%, and the energy error
decreases from about 12.8% to 8.6%. Note that these results are better than when using
even eight offline basis functions. Thus, one obtains better accuracy with fewer degrees
of freedom.

Table 1. Relative errors (%) for temperature and displacements with various numbers of offline and
online basis functions (Mo f f and Mon). Online basis functions are updated every 5 and 10 time steps
(left and right, respectively).

Mon DOFT
H DOFu

H

Enrichment Periodicity = 5 Enrichment Periodicity = 10

εT
L2 εT

e εu
L2 εu

e εT
L2 εT

e εu
L2 εu

e

Mof f = 1 Mof f = 1

0 121 242 6.785 13.479 30.542 24.562 6.785 13.479 30.542 24.562
1 242 363 3.187 5.93 16.077 19.078 3.681 7.435 19.187 17.908
2 363 484 1.637 2.888 8.324 12.903 2.337 4.338 12.453 14.285

Mo f f = 2 Mo f f = 2

0 242 484 5.317 10.342 25.777 20.197 5.317 10.342 25.777 20.197
1 363 605 2.613 4.698 11.84 15.568 3.108 6.083 16.941 15.459
2 484 726 1.375 2.45 6.824 11.413 2.066 4.003 9.043 11.896

Mo f f = 4 Mo f f = 4

0 484 968 3.577 7.063 11.238 12.775 3.577 7.063 11.238 12.775
1 605 1089 1.499 2.635 5.856 10.561 1.861 3.359 6.038 10.175
2 726 1210 0.812 1.397 3.827 8.555 1.36 2.379 4.901 7.984

Mo f f = 8 Mo f f = 8

0 968 1936 2.02 3.61 5.653 6.945 2.02 3.61 5.653 6.945
1 1089 2057 1.031 1.771 3.399 6.263 1.303 2.228 3.888 6.036
2 1210 2178 0.591 0.969 2.159 5.485 0.973 1.577 2.915 5.166

Mo f f = 12 Mo f f = 12

0 1452 2904 1.427 2.542 4.089 5.147 1.427 2.542 4.089 5.147
1 1573 3025 0.724 1.254 2.349 4.748 0.958 1.623 2.657 4.636
2 1694 3146 0.418 0.699 1.513 4.115 0.72 1.168 2.047 4.078

Then, let us analyze the errors when updating the online basis functions every 10
time steps. As with updating every five time steps, the online basis functions significantly
improve the method’s accuracy. The errors are comparable to updating every five time
steps, but slightly larger on average. More frequent updates have a noticeable effect
with fewer offline basis functions. For example, if one adds two online basis functions
to two offline basis functions, one obtains the following results compared to updating
once every five time steps—the L2 relativity error in temperature is 2.066% instead of
1.375%, and the energy error is 4.003% instead of 2.45%. For displacements, one gets the L2
error equal to 9.043% instead of 6.824% and the energy error equal to 11.896% instead of
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11.413%. In general, updating every 10 time steps has comparable errors. This phenomenon
can be explained by the fact that the solution does not change significantly quickly in
such problems.

To see the dynamics of the error, the error graphs in time steps were plotted. Figure 12
shows the error dynamics for four offline basis functions with and without online basis
functions. The online basis functions are updated every five time steps. Above are the L2
errors, and below are the energy errors. One can see that the errors decrease with each time
the online basis functions are updated. In general, the errors fall or remain at about the
same level.

(a) Relative L2 errors (%) for T and u (from left to right).

(b) Relative energy errors (%) for T and u (from left to right).

Figure 12. Relative L2 and energy errors (%) for multiscale solutions using 4 offline basis functions
and 1 and 2 online basis functions (enrichment periodicity is 5).

Figure 13 shows the error dynamics when updating the online basis functions every
10 time steps. Above are the L2 errors, and below are the energy errors. As with the update
every five time steps, the errors fall with each update of the online basis functions. In
general, the errors also either fall or remain at about the same level.

The results show that the online basis functions can significantly improve the accuracy
of the multiscale method.
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(a) Relative L2 errors (%) for T and u (from left to right).

(b) Relative energy errors (%) for T and u (from left to right).

Figure 13. Relative L2 and energy errors (%) for multiscale solutions using 4 offline basis functions
and 1 and 2 online basis functions (enrichment periodicity is 10).

8. Conclusions

In this paper, a thermo-mechanical model with phase transition considering changes
in mechanical properties of the medium was presented. For this model, a finite-element
approximation on a fine grid was developed. To reduce the size of the discrete problem,
multiscale approaches were proposed. An offline multiscale approach based on the Gener-
alized Multiscale Finite Element Method (GMsFEM) was presented. Since the problem is
nonlinear, a residual-driven online multiscale approach was also developed.

A two-dimensional model problem of heterogeneous soil heaving with a stiff inclusion
was considered. In numerical simulations, the effect of soil heaving caused by the phase
transition was observed. Displacements were more substantial the closer they were to
the top boundary. However, as expected, the stiff inclusion region displacements were
smaller than in the rest of the upper domain. The phase transition interface moved down-
ward as the soil froze. There were changes in the thermal and mechanical properties of
the medium corresponding to the phase transition interface. Therefore, the numerical
simulation correctly described soil heaving.

Next, offline and online multiscale approaches were considered. In general, both
approaches successfully approximated the fine-grid solution with significantly reduced
degrees of freedom. The offline multiscale approach can be applied to this problem, but it
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requires more degrees of freedom for accurate approximation. At the same time, adding
online basis functions can significantly improve accuracy with fewer degrees of freedom.
Updating online basis functions every five time steps achieved better accuracy than updat-
ing every 10 time steps (especially for fewer offline basis functions). However, updating
every 10 time steps also provided good accuracy. This phenomenon is because the solution
does not change too strongly between time steps. Thus, the online multiscale approach
is recommended for the thermo-mechanical model since it provides better accuracy with
fewer degrees of freedom.

In terms of applications, the proposed thermo-mechanical model can be used to
analyze the stability of structures in permafrost zones. The model problem in the numerical
results was motivated by the real-world problems of simulating the behavior of piles during
soil frost heaving. Furthermore, the developed online multiscale approach can be used to
reduce computational costs when simulating heterogeneous soils.

In future works, more complex mathematical models with phase change, taking into
account salinity and filtration, will be considered.
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