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Artificial Color Constancy via GoogLeNet with Angular
Loss Function
Oleksii Sidorov

The Norwegian Colour and Visual Computing Laboratory, NTNU, Gjovik, Norway

ABSTRACT
Color constancy is the ability of the human visual system to
perceive colors unchanged independently of illumination.
Giving a machine this feature will be beneficial in many fields
where chromatic information is used. Particularly, it significantly
improves scene understanding and object recognition.

In this article, we propose a transfer learning-based algorithm,
which has twomain features: accuracy higher thanmany state-of-
the-art algorithms and simplicity of implementation. Despite the
fact that GoogLeNet was used in the experiments, the given
approach may be applied to any convolutional neural networks.
Additionally, we discuss the design of a new loss function
oriented specifically to this problem and propose a few of the
most suitable options.

Introduction

Color is an important part of visual information. However, color is not an
intrinsic feature of an object, but the result of interaction between scene illumi-
nation, object’s reflection, camera sensor’s sensitivity, etc. Since most applica-
tions require only the object’s intrinsic characteristics, separation of this
information (particularly, removing illumination color casts) is an essential task.

Human visual system solves this task via color constancy (CC) –
a complex mechanism that involves color adaptation, color memory, and
other features of human vision. Creation of an artificial algorithm that is
able to do the same would be beneficial for many computer vision applica-
tions. Scene understanding, object recognition, pattern recognition, stereo
vision, tracking, quality control, and many other fields use chromatic
information and may suffer from its falseness. For example, Hosseini and
Poovendran (Hosseini and Poovendran 2018) have illustrated how the
VGG-16 network (Simonyan and Zisserman 2014) can be “fooled” by
wrong colors (Figure 1).

Despite the high importance of this problem, a universal solution still has
not been found. Recently, the development of machine learning techniques
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and especially convolutional neural networks (CNNs) facilitated the creation
of more accurate CC algorithms. Considering that a majority of original
CNNs designed specifically for CC are quite simple and consist of only a few
layers, we propose to improve their efficiency by means of more deep and
more powerful nets using a transfer learning approach which is widely used
in deep learning. Besides the gain in complexity, this approach allows us to
greatly reduce training time and givespeople, who are not familiar with deep
learning and cannot design CNN from scratch an opportunity to use efficient
algorithms for their needs. (The shortest form of our algorithm is only 30
lines of code long and takes just a few hours to train.)

The general framework of CNN-based CC methods is an image regression
that predicts coordinates of an illumination vector. Since the length of a vector is
normalized in the result, only its orientation is important. Consequently, we
propose, instead of mean squared error (MSE), which tries to fit both orientation
and length, to use an angular loss function which considers only orientation of
a vector and adds flexibility in parameters which are not important for the given
task. The potential design of the angular loss function is not unique ; hence, we
further discuss a few possible options for it.

Related Work

Methods of computational CC may be separated into two big groups: statis-
tics based and learning ased. Methods from the first group were widely used in
the last decades and exploit statistics of a single image.Moreover, in general, they
usually apply strong empirical assumptions and operate in their limits. From
these methods, we can highlight the most important ones: Gray World
(Buchsbaum 1980), which is based on the assumption that average color in the
image is gray and tries to estimate color of illumination as shift causing non-gray
average; White Patch (Brainard and Wandell 1986), which is based on the

Figure 1. Classification of images by VGG-16 net. Top row: original images from Caltech 101
dataset (Fei-Fei, Fergus, and Perona 2004); bottom row: the same images casted by random
uniform illumination.
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assumption that the brightest point on image is a perfect white reflector and uses
its color as color of illumination; Gray-Edge (Van de Weijer, Gevers, and
Gijsenij 2007); and some more recent methods (Cheng, Prasad, and Brown
2014; Gao et al. 2014; Yang, Gao, and Li 2015). All of them were unified in
a single framework by Van de Weijer, Gevers, and Gijsenij (2007).

Learning-based techniques estimate illumination color using a model
created on a training dataset. In general, learning-based methods are
shown to be more accurate than statistics-based approaches. This group
includes a gamut mapping algorithm (Finlayson, Hordley, and Tastl 2003),
an Support Vector Regression-based algorithm (Funt and Xiong 2004),
an exemplar-based algorithm (Joze and Drew 2014), and numerous CNN-
based algorithms presented in the last 3 years (Bianco, Cusano, and
Schettini 2015a; Fourure et al. 2016; Hu, Wang, and Lin 2017; Lou et al.
2015; Shi, Loy, and Tang 2016). Many of the neural network-based algo-
rithms (Cardei, Funt, and Barnard 2002; Cheng et al. 2015; Finlayson,
Hordley, and Hubel 2001; Rosenberg, Hebert, and Thrun 2001) use hand-
crafted, low-level visual features; however, most recent algorithms learn
features using CNNs. Bianco, Cusano, and Schettini (2015a) first used
patch-based CNNs for CC; in their work, simple CNN was used to extract
local features which then were pooled (Bianco, Cusano, and Schettini
2015a) or passed to a support vector regressor (Bianco, Cusano, and
Schettini 2015b). Later, Shi, Loy, and Tang (2016) proposed a more
advanced network to deal with estimation ambiguities. The usage of the
patches cropped from the images increases the size of the training dataset
and augmentation of the data, however, at the cost of loss of semantic
information. Algorithm of Lou et al. (2015) works with full images and
processes them with deep CNN that was pretrained on a big ImageNet
dataset with labels evaluated from hand-crafted CC algorithms and fine-
tuned on each single dataset with ground-truth labels. This work is the
most relevant to the algorithm presented in this paper but uses much
simpler network as a base (AlexNet (Krizhevsky, Sutskever, and Hinton
2012), while we use GoogLeNet (Szegedy et al. 2015)) and does not prove
the necessity of the first step (in this article, higher accuracy was achieved
without using any hand-crafted labels). In the work of Fourure et al. (2016),
custom mixed Max-Minkowski pooling and single max pooling networks
were presented that demonstrated state-of-the-art accuracy. The latest and,
to the best of our knowledge, the most accurate algorithm was presented by
Hu, Wang, and Lin (2017) and is called FC4. FC4 is a fully convolutional
network that allows using images without resizing or cropping; also, it uses
confidence-weighed pooling which helps avoid ambiguity through assign-
ment to each patch confidence weights according to the value they provide
for CC estimation. Our algorithm, similar to the algorithm of Lou et al.
(2015), is not fully convolutional. This disadvantage, however, is not
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critical, because it can be solved in just one preprocessing step (resizing)
with some loss of semantic information. Additionally, using any fully
convolutional net instead of GoogLeNet also solves this problem. In addi-
tion to the above, there are also a few more specifically oriented works, for
instance, aimed at face regions (Bianco and Schettini 2012), texture classi-
fication (Bianco et al. 2017), or videos (Qian et al. 2017).

Experimental

Problem Formulation

Following the previous works, our goal was to estimate the color of illumina-
tion, noted as e ¼ e1; e2; e3ð Þ, by the given RGB image, to be able to discard
illumination color cast using the Von Kries (1970) diagonal transform:

Rc

Gc

Bc

2
4

3
5 ¼ e1�1 0 0

0 e2�1 0
0 0 e3�1

2
4

3
5 R

G
B

2
4

3
5; (1)

where Rc;Gc;Bcð Þ is the corrected color as it appears under canonical white
illumination. While there can be multiple illuminants in a scene, this work is
focused on the traditional problem of estimating a single global illumination
color, e.g., e x; yð Þ ¼ e. Since we are not interested in the change in global
intensity of illumination, all the illumination vectors were normalized as
follows:

e ffiffiffi
3
p e

ek k (2)

For comparison of predicted illumination vector (ê) and ground-truth data
(e), angular error metric (Equation (3)) is considered. This metric was first
proposed by Hordley and Finlayson (Hordley and Finlayson 2004) and
nowadays is a standard in this field.

ε ¼ arccos
ê; eh i
êk k ek k

� �
(3)

Network Architecture

In the proposed approach, GoogLeNet by Szegedy et al. (2015) is used as
a starting point for transfer learning. GoogLeNet is a 22-layer deep network
(Figure 2) which achieved state-of-the-art accuracy in classification and
detection in the ImageNet Large-Scale Visual Recognition Challenge 2014
(ILSVRC14). In comparison with AlexNet (Krizhevsky, Sutskever, and
Hinton 2012), it uses 12× less parameters, therefore works faster and also
provides higher accuracy. The core of this network is nine inception
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modules. The inception module basically acts as multiple convolution filters,
which are applied to the same input, with some pooling. The results are then
concatenated. This allows the model to take advantage of multilevel feature
extraction and to cover a bigger area, while keeping a fine resolution for
small information on the images.

GoogLeNet has been trained on over a million images and can classify images
into 1000 object categories. Tomodify the network for regression task, first of all,
we had to remove the last three layers, which contain information on how to
combine the features that the network extracts into class probabilities and labels
(“FC,” “SoftmaxActivation,” “Softmax2”). In their place, a fully connected layer
with three neurons and a regression output layer were added.

Angular Loss Function
The MSE loss function is used in the regression layer by default. When using
it, the model is trying to predict the illumination coordinates as close as
possible to the ground-truth data, e.g., predict the same vector. However,
since lengths are normalized and only angles are important for CC task, we
can benefit from it by removing restrictions on a length and adding a degree
of freedom. Thus, by changing the loss function to the one which depends
only on angle, we make the model more flexible and task oriented.

The primary value that the algorithm computes is a cosine of the angle
between predicted values and ground truth. Considering this fact, the follow-
ing loss functions were proposed:

L1 ¼ arccos cos ε ¼ ε (4)

L2 ¼ 1� cos ε (5)

L3 ¼ 1� cos2ε ¼ sin2ε (6)

L4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2ε
p

¼ sin ε (7)

Of course, choice is not limited to these options, but these are the simplest
ones. To the best of our knowledge, only the L1 function was used for CC by
Hu, Wang, and Lin (2017), and L2 was used by Hara, Vemulapalli, and

Figure 2. Schematic representation of the GoogLeNet. Credits (Szegedy et al. 2015).
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Chellappa (2017) for a very different task. In the selection, we took into
consideration the complexity of the function, its derivative, shape of the
curve, and possible problematic points. Consequently, function L4 was imme-
diately discarded due to the complexity, complexity of the derivative, and the
same behavior in the neighborhood of a 0 as L1. Function L1 is the most
direct loss with respect to the error, and it also showed a good result in the
case of FC4 net. However, the fact that the error is computed as arccosine of
cosine makes the derivative much more complex (Equation (8)) and gener-
ates an error or NaN values when ε equals 0, π, 2π, … (that was a major
problem in our experiment).

@L1
@êi
¼ @ arccos cos εð Þ

@êi
¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cos2ε
p �

@ ê;e
êk k ek k

� �
@êi

¼

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hê;e2i

êk k2 ek k2
q � êihê; ei � eihe; ei

êk k3 � ek k ¼ êihê; ei � eihe; ei
ê; ê

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ê; êhe; ei � hê; ei2

q
(8)

The expansion of the functions L2 and L3 in the Maclaurin series (Equations
(9, 10)) clearly demonstrates their behavior proportional to ε2 around 0. We
consider this feature beneficial for gradient computation by analogy with
MSE loss.

1� cos ε ¼ ε2

2
þ ε4

24
� ε6

720
þ O ε8

� � ¼ 1�
X1
k¼1

�1ð Þkε2k
2kð Þ! (9)

1� cos2ε ¼ ε2 � ε4

3
þ 2ε6

45
� ε8

315
þ O ε10

� � ¼ �X1
k¼1

�1ð Þk 2�1þ2kε2k
� �
2kð Þ! (10)

Additional analysis of their plots (Figure 3) reveals significant drawback of
function L3 – possibility to obtain an error of 180 degrees and negative values
of illumination.

Figure 3. Plots of y ¼ 1� cos ε (solid line) and y ¼ 1� cos2ε (dashed line).
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Thereafter, loss function L2 ¼ 1� cos ε was used in our experiments.
A potential issue that derivative will become zero at point π exists, but the
probability of it is extremely low. Ultimately, derivatives of the functions L2
and L3 are given as follows:

@L2
@êi
¼ @ 1� cos εð Þ

@êi
¼ �

@ ê;eh i
êk k ek k

� �
@êi

¼ êi ê; eh i � eihe; ei
êk k3 � ek k (11)

@L3
@êi
¼ @ 1� cos2εð Þ

@êi
¼ �2 ê; eh i

êk k ek k �
@ ê;eh i

êk k ek k
� �
@êi

¼

¼ 2
ê; eh i
êk k ek k �

êi ê; eh i � ei e; eh i
êk k3� ek k ¼ 2

êi ê; e2h i � ei ê; e2h i ê; eh i
ê; êh i2 � e; eh i (12)

Image Datasets

Two standard benchmark datasets, SFU Grayball (Ciurea and Funt 2003)
and ColorChecker Reprocessed (other names: RAW dataset, 568-dataset,
Gehler’s dataset) (Gehler et al. 2008; Lynch, Drew, and Finlayson 2013),
are used. The Grayball dataset contains 11,346 real-world images. In each
image, a gray ball is placed in the right-bottom of the image that allows to
obtain the ground-truth illumination color. During training and testing,
the gray ball has been removed from the image. The ColorChecker dataset
contains 568 real-world images. The Macbeth ColorChecker chart is
included in every scene acquired; thus, ground-truth illumination is
known. In both training and testing subsets, ColorChecker chart has
been removed.

Additionally, geometrical data augmentation was applied to both datasets.
It consisted of random translations along the X- and Y-axis up to 30 pixels
and horizontal reflections. The augmentation increases the variance of train-
ing data and helps to prevent the network from overfitting and memorizing
the exact details of the training images. Particularly for CC task, models
greatly benefit from chromatic augmentation, e.g., casting the images with
semirandom illumination and changing corresponding ground-truth vectors.
In this article, it was not used, but we imply that the accuracy of the
presented algorithms may be increased using this technique (Fourure et al.
2016; Hu, Wang, and Lin 2017; Lou et al. 2015).

The fact that the proposed model contains a fully connected layer imposes
a restriction on the size of the input image of 224 × 224 pixels. Hence, all the
images were resized, and central square areas were cropped.
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Other Experimental Details

All the models have been implemented in MATLAB 2017b, using Neural
Network Toolbox. The simplicity and readability of MATLAB code allow
creating and directly using models like ours for a wide range of audience,
which we consider as an undoubted advantage. The source code is openly
accessible and can be downloaded by the following link: https://github.com/
acecreamu/color-constancy-googlenet. Notwithstanding the fact that the
development of the algorithm and growth of its complexity have no limits,
the simplest pure form of the given algorithm can fit in 30 lines of code.

The technological equipment used in the experiments consisted of only
one laptop with Intel i7-7500U (2.7 GHz) CPU, 16 Gb RAM, and NVIDIA
950MX (2 Gb) GPU, which also supports the concept of the wide availability
of presented methods.

Results

Following the previous papers, a 15-fold cross-validation was used for
Grayball (Ciurea and Funt 2003) dataset. For much smaller ColorChecker
(Gehler et al. 2008) dataset, only a threefold cross-validation was used in
order to repeat the conditions of previous experiments and compare the
results objectively. Each time, the corresponding dataset was partitioned
into 15 or 3 subsets, and in a loop, each of them was used as a test set; after
that the results of all the iterations were averaged. Such an approach
provides a reliable evaluation of the model’s performance minimizing the
influence of randomness.

Tables 1 and 2 present the comparison of our results with current state-
of-the-art algorithms. Several standard metrics are reported in terms of
angular error in degrees: mean, median, trimean or standard deviation,
mean of the lowest 25% of errors, mean of the highest 25% of errors, and
95th percentile. For reasons unknown, very limited statistical data were
reported in the case of Grayball dataset; however, there is no such problem
in the case of ColorChecker dataset.

Table 1 shows the results obtained on SFU Grayball dataset and the com-
parison of the results with state-of-the-art methods. The first two sections
correspond to statistic-based and learning-based methods. The top five
results are highlighted with shades of gray.

In the case of both datasets, the model with angular loss outperforms the
one with MSE loss. The empirical comparison of the different angular loss
functions and design on the new ones may be a subject for future research.

Table 2 shows the results obtained on the reprocessedColorChecker dataset and
the comparison of the results with state-of-the-art methods. The first two sections
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correspond to statistic-based and learning-based methods. The top five results are
highlighted with shades of gray.

Visual evaluation of results can be done using the examples illustrated in
Figure 4.

Conclusion

In this article, we proposed an approach that allows to easily create effective CC
algorithm. The presented technique may be applied to any advanced CNN. We
used GoogLeNet, and depending on the dataset obtained the best or comparable
with the best accuracy. A significant advantage of our approach is that it requires
neither high skills in machine learning nor expensive technical equipment, nor
a long time, which makes it available to the general public.

Also, we discussed the design of angular loss function, which is an important
question for any CC algorithm. As a result, we chose function 1� cos ε, where ε
is an angular error, because of its simplicity, efficiency, and high suitability for
this task. However, the discussion and empirical examination are not finished,
which may be extended in future works.

Table 1. The results obtained on SFU Grayball dataset, and comparison with state-of-the-art
methods. First two sections correspond to statistic-based and learning-based methods.

Mean Median Standard Deviation
Best
25%

Worst
25%

95th
Percentile

Gray World, Buchsbaum (1980) 7.9 7.0 - - 15.2 -
White Patch, Brainard and Wandell
(1986)

6.8 5.3 - - - -

Shades-of-Gray, Finlayson and Trezzi
(2004)

6.1 5.3 - - - -

2nd-order Gray-Edge, Van de Weijer,
Gevers, and Gijsenij (2007)

6.1 4.3 - - - -

Gray Patches, Yang, Gao, and Li (2015) 6.1 4.6 - 1.1 13.6 -
Local Surface Refl. Gao et al. (2014) 6.0 5.1 - - 11.9 -
1st-order-Gray-Edge, Van de Weijer,
Gevers, and Gijsenij (2007)

5.9 4.7 - - - -

3D Scene Geometry, Elfiky et al. (2014) 5.4 4.5 - - - -
Temporal sequence, Prinet, Lischinski,
and Werman (2013)

5.4 4.6 - - - -

Single max pooling, Fourure et al. (2016) 5.2 4.5 - - - -
Mixed MaxL (Bianco, Cusano, and
Schettini 2015b) pooling, Fourure et al.
(2016)

4.9 4.3 - - - -

Exemplar-based, Joze and Drew (2014) 4.4 3.3 - - - -
AlexNet Retrained, Lou et al. (2015) 3.9 3.0 3.3 - - -
GoogLeNet + MSE 2.55 1.91 2.19 0.58 5.59 6.78
GoogLeNet + angular loss 1.98 1.49 1.87 0.39 4.51 5.73
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