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Abstract 

 
In this paper, a similarity transformation is devised to construct a Miura type transformations 

between one type of variable coefficient nonlinear Schrodinger equations and the cubic NLS 

equation. This transformation is devoted to obtain the travelling wave solutions of a 

complicated equation by using the solutions of a simpler equation directly. The result shows 

different rogue wave solutions of the variable coefficient nonlinear Schrodinger equations are 

given easily. 

Keywords:  Nonlinear schrodinger equation, similarity transformation, miura type transformation, 

rogue wave. 

 

1 Introduction 

 
Rogue waves are firstly found in the ocean. The amplitude of the rogue waves is much higher than 

the average wave crests around them. They are named monster waves or extreme waves, which 

are a threat even to large ships and ocean liners [1-5]. Rogue waves was not only found in oceans 

but also in optics, plasmas, superfluids and Bose-Einstein condensates. The nonlinear Schrödinger 

equations (NLSE) are an important model describing rogue waves. Rogue waves have been found 

in many different the nonlinear Schrodinger equations. Studies of finding new rogue waves of the 
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NLSE is an interesting work. 

 

The inhomogeneous NLS equation with variable coefficients in the form 
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where ),( txψψ = , including group velocity dispersion )(tβ , linear potential v(x, t), 

nonlinearity )(tg  and the gain/loss term )(tγ . When 1)( =tβ , Eq. (1) becomes the generalized 

Gross-Pitaevskii equation. Eq. (1) has been studied by many authors [6-15].  

 

Rogue waves in an optical system has been researched in [6,7]. Furthermore, the Peregrine soliton 

in nonlinear fibre optics and rogue waves and rational solutions of the nonlinear Schrödinger 

equation were studied in [8-11]. Recently, Nonautonomous rogons in the inhomogeneous 

nonlinear Schrödinger equation [12] and rogue waves in the atmosphere as well as vector financial 

rogue waves has been demonstrated in [13-15]. Particularly, Yan used the similarity 

transformation and direct ansatz to obtain the analytical nonautonomous rogons of Eq. (1). In this 

paper, we will use a simpler method [16] to construct different rogue waves of Eq. (1). Especially, 

we are interested in finding some new rogue waves.  
 

2 Similarity Transformation 

 
In this section, we want to obtain the rogue wave solutions of Eq. (1) by a direct transformation 

between Eq. (1) and the famous NLS equation    
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To this purpose, we make a similarity transformation as follows       
    

),(),(),(),( txietxpTXqtx φψ = ，                                                                (3) 

  

where X  is the propagation distance  and  T  is the transverse variable. In each case, the function 

( , )x tφ  describes the envelope of waves, and its absolute value carries information about either 

wave elevation, ),(),,( txtxp φ  are the real-value functions, ),( TXq is the complex-value 

functions. And, we substitute the transformation (3) into Eq. (1) and get the following system: 
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Compared with Eq. (2), we have 
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From (5), (8)-(10), we obtain 

 

3

1
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tg = , 0),( ≠= ptpp , )(tXX = . 

 

Substituting 0=xX  into (7), we get 
p

X t

1
=  and 
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It is noted that 0=xp  for )(tpp = . So we deduce that 0=xxT   from (12).Solving (6), one 

can have 
pT

t
x

2

1
)( =β  which implies 02 ≠xT  and )(tTT xx = . Let )(1 tfTx = , we obtain 
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 ∫ +== )()()( 211 tfxtfdxtfT .                                                              (17) 

 

  
Substituting (16),  (17) into (11), (13), (14), we obtain the following facts 
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where )(),(),(),( 321 tptftftf  are arbitrary functions. 

 

3 Rogue Waves and Examples 
 
The one rogue waves of Eq.(2) are given by [9,10]  

 

iX
e

TX

iX
q )

441

)21(4
1(

22 ++

+
−= ,                                                                    (21) 

 

By the previous transformation, we can obtain one-rogue wave solutions of Eq. (1) 
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The expression (22) includes different rogue wave solutions. Several examples are given as 

follows. 

 

(1) Taking 1=p , 1)(1 =tf ,
2

2 )( ttf = , 00 =x , we have 
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which is shown in Fig. 1. 
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   (a)                                   (b) 

 

Fig. 1. (a) The one-rogue wave solution and (b) the projective graph with 1=p , 

1)(1 =tf , 
2

2 )( ttf = , 00 =x  

 

(2) Taking 1=p , 1)(1 =tf , ttf =)(, 2 , 00 =x , we have 
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which is shown in Fig. 2. 

 

  
 

Fig. 2. (a) The one-rogue wave solution and (b) the projective graph with 1=p , 1)(1 =tf ,

ttf =)(, 2 , 00 =x  

 

(3) Taking 1=p , 1)(1 =tf ,
3

2 )( ttf = , 00 =x , we have 
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which is shown in Fig. 3. 

 

  
    

Fig. 3. (a) The one-rogue wave solution and (b) the projective graph with 1=p , 1)(1 =tf ,

3

2 )( ttf = , 00 =x  

 

Another rogue waves of Eq. (2) are given by [9,10] 
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By the similar method, we can obtain two-rogue wave solutions of  Eq. (1) 
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4 Conclusion  

 
In conclusion, we construct a Miura type transformations between one type of variable coefficient 

nonlinear Schrödinger equations and the cubic NLS equation. The result demonstrates that 

different rogue wave solutions of the variable coefficient nonlinear Schrödinger equations are 

given easily. The presented method can also be extended to other type nonlinear Schrödinger 

equations. 
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