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ABSTRACT 
 

Reducing the concentration of CO2 from the atmosphere has attracted a lot of attention given the 
rapid level of industrialization in the world. Process Industries are one of the major contributors to 
this pollution in terms of the incessant release of CO2 from flue gas streams. In recent times metal 
oxides have received a lot of attention as potential adsorbents for solving this problem.They find 
application in post-, pre-, and oxy-combustion conditions. Their basic sites plus a lower charge to 
radius ratio increase their ionic nature and site basicity and facilitate the capture of this pernicious 
gas from flue gas streams by reacting to form carbonates, which when heated liberates an almost 
pure stream of CO2 which can be sequestered, thereby, aiding the release of environmentally 
benign flue gas streams to the atmosphere. This work takes a concise review of these metal oxides 
that have been widely studied. 
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1. INTRODUCTION 
 
The rise in industrial activities in the world today 
has necessitated an increase in the world’s 
energy demand. This energy demand is 
predominantly being met in the form of coal, 
petroleum, and natural gas. However, these fuels 
have been identified to have a deleterious effect 
on the environment due to the emissions such as 
CO2, SOX, NOX, Mercury, and Particulate matter 
that result from the combustion of these fuels. 
Recently, major attention has been focused on 
CO2 because they have been regarded as the 
major cause of global warming, ocean 
acidification, sea-level rise, and climate change. 
The need to curb these emissions has led to a 
renaissance in the research industry [1-3], to 
develop strategies that would significantly reduce 
CO2 emissions both from the stationary sources 
with high CO2 concentrations (e.g. Process 
Industries, and Coal-fired Power plants) and 
directly from the air have attracted increasing 
attention worldwide. Nonetheless, this decrease 
in carbon-intensive fuel consumption has not 
been achieved as the CO2 concentration on the 
earth has been steadily increasing as seen in 
Fig. 1, as of December 2019, CO2 concentration 
in the atmosphere had reached 412 ppm 
accounting for about 31% increase of that in 
1958 with reports prognosticating that the CO2 
concentration in the air would surpass 550ppm 
by 2050 [4] if no further drastic actions are taken 
to curb these CO2 emissions. Although the 
supply of alternative energies such as biomass, 

solar, and wind is increasing, they are still 
inchoate and are still far from ready to replace 
fossil energy completely. 
 
Recently carbon capture, utilization, and 
sequestration (CCUS) have been touted as a 
viable option to mitigate these CO2 emissions 
within a short term. This technology involves 
using various sorbents to capture the CO2 from 
stationary sources such as Process Industries 
followed by recycling for utilization or storing 
underground. CCUS has the potential to lead to 
a closed carbon cycle especially if the captured 
CO2 is utilized as a carbon source feedstock for 
industrial chemicals and fuels production. It 
offers a cost-competitive way to fill the gap 
between the ever-increasing energy demand and 
CO2 emissions reduction campaign [6]. The 
various capture process that exists for CCUS 
includes physical absorption [7-8], chemical 
absorption [9-10], adsorption [11], and 
membranes [12]. Currently, absorption by amine-
based solvents is the predominant technology 
commonly used in the industry [13-15], but the 
high energy cost of absorbent regeneration, high 
corrosion rate, high absorbent cost, associated 
with these absorbents has inspired research into 
other sorbents which can be used for carbon 
capture such as metal oxide. This work as 
depicted in Fig. 2 therefore aims to present a 
clear and concise review on some selected metal 
oxides in terms of their capture capacity, 
reversibility rate, carbonation kinetics and multi-
cycle durability. 

 

 
 

Fig. 1. Global carbon emission from 2006 – 2019, reproduced from [5] 
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Fig. 2. Classification of metal oxide adsorbents as discussed in this review 
 
2. METAL OXIDES  
 

Metal oxides are regarded as promising 
chemisorbents for CO2 capture due to their 
thermodynamic stability, abundance in nature, 
low cost of production, and reduced toxicity [16]. 
Coupled with the basic sites of some selected 
metal oxides that possess a lower charge to 
radius ratio which increases their ionic nature 
and site basicity [17], they exhibit good 
performance for CO2 capture. In addition, with 
applicability within a wide range of temperatures 
from ambient conditions to temperatures of about 

700
0
C [18], research into the use of metal oxides 

for CO2 capture has become a hot area of 
research. The mode of operation of metal oxides 
follows a cyclic process of exothermic 
carbonation and endothermic calcination as 
depicted in Fig. 3. The metal oxide forms stable 
carbonates as the flue gas is passed through it, 
and this metal carbonates upon heating releases 
a pure stream of CO2 gas which regenerates the 
oxides. Eventually, the generated pure CO2 gas 
can either be sequestered underground or used 
for enhanced oil recovery [19]. 

 

 
 

Fig. 3: Cyclic CO2 capture process for metal oxides (MO) and metal carbonates (MCO3) 
reproduced from [20] 
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However, the process efficiency of metal             
oxides for CO2 capture is limited in process 
applications due to the effect of sintering [20] 
which reduces sorbent performance especially at 
high temperatures when metal oxides are 
repeatedly cycled for optimum functionality. This 
reduction is facilitated through a decrease in the 
pore sizes, consequent change in shapes of 
pores, and even closure of small pores during 
the heating process. Also, it is reported in the 
structure of metal oxides, that bimodal pore size 
distribution exists as an after effect of sintering; 
in this case, pores of larger sizes are identified 
[21]. Again, this is facilitated by the conversion of 
small pores to large pore sizes via the reduction 
in surface energy during the recycling                            
process. 

 
In general, The CO2 adsorption capacity of metal 
oxide adsorbents depends mainly on available 
active sites (basic sites) accessible to CO2 
molecules. The reaction rate is largely dependent 
on the rate of CO2 diffusion into the inner layer or 
pores and is the rate-determining step. Pore 
characteristics and chemical affinity determine 
the selectivity of the adsorbent. The energy 
requirement for regeneration is associated with 
the heat of adsorption. The poor cyclic capacity 
can be related to thermo-mechanical strength 
and drastic changes in morphology during multi-
cycle operation. Hence, the physical, as well as 
chemical properties of the material such as 
surface area, pore volume, pore size distribution, 
chemical composition, particle size, surface 
geometry at the atomic scale, and stability, are 
very critical for better CO2 capture characteristics 
[22]. As a guiding rule, metal oxides that can 
qualify for CO2 capture must be; bountiful, react 
with CO2 at low temperature, require low 
regeneration energy, should have suitable 
reaction kinetics, and must form a carbonate that 
is stable in the environment at ambient 
conditions. Below are some of these metal 
oxides that have been investigated and 
considered for CO2 Capture: 

 
2.1 Alkali Metal Based Oxides  
 
Porous oxides such as alkali and alkaline-earth 
metals have been reported as promising 
candidates for CO2 capture. They are usually 
binary-metal oxides made up of a minimum of 
one alkaline element. These metal oxides 
possess long durability, good mechanical 
strength, wide availability, and low cost since 
they are present as natural minerals and have 

high CO2 absorption capacity at moderate 
working temperatures [23]. 
 

Recently attention has being drawn to lithium-
based silicates(Li4SiO4, Li8SiO6, and Li2SiO3) , 
lithium-based zirconates (Li2ZrO3, Li6Zr2O7, and 
Li8ZrO6), lithium based- aluminate (Li5AlO4), 
lithium cuprate (Li2CuO2), lithium ferrite (LiFeO2), 
lithium titanate (Li4TiO4), and sodium ceramics 
(Na2ZrO3, Na2SiO3, and Na2TiO3) due to their 
favourable characteristics . Also, the precursors 
of these compounds lithium oxide (Li2O), lithium 
hydroxide (LiOH), and sodium hydroxide (NaOH) 
have also being studied for CO2 adsorption but 
however have shown difficulty in regeneration, 
high reactivity, instability, and huge volume 
expansions during absorption[24]. Among these 
materials, Li4SiO4 has shown great promise 
given its higher CO2 sorption capacity and cyclic 
stability. Additionally, the regeneration 
temperature of Li4SiO4 material is much lower 
when compared with the calcium-based CO2 
sorbents, indicating that lower energy 
consumption is required for its regeneration [25]. 
The efficacy of these sorbent materials is closely 
determined by temperature, pressure, CO2 
concentration, CO2 flow rate, particle size, 
crystalline structure, and structural phase 
transitions during ceramic synthesis. A double 
sorption mechanism has being proposed for the 
sorption of this compounds, first beginning with 
chemical sorption of CO2 over the surface of this 
ceramics which leads to the formation of an 
external layer of alkaline carbonate and 
subsequent diffusion of the alkaline element 
throughout the external layer formed in order to 
reach the surface and continue reacting with the 
CO2 [26-27]. This diffusion process is one of the 
rate determining steps of this mechanism [28]. 
 

It has being reported by Romero-Ibarra et al [29] 
that a secondary lithium phase which depends 
on the initial composition of the lithium ceramic is 
also formed on the particle surface which can 
either reduce or increase the diffusion process 
depending if the composition of the external shell 
as depicted in Fig. 4 is composed of Li2CO3 and 
metal oxides or another lithium phase. According 
to their work, the presence of metal oxides 
reduces CO2 chemisorption while the presence 
of Li2CO3 and another lithium phase, can either 
enhance or decrease the CO2 chemisorption 
process depending on whether the secondary 
lithium phases have better lithium diffusion 
properties than Li2CO3 or not; although it should 
be noted that this only applies to cases where 
Li2CO3 is a solid. 
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Fig. 4. Possible compositions of external shell reproduced from [23] 
 
A faster reaction rate has being reported for 
Na2ZrO3 when compared to synthetic adsorbents 
such as Li2ZrO3 and Li4SiO4 this has being 
attributed to the lamellar structure of Na2ZrO3 

which enhances sodium mobility, unlike the more 
packed structure seen in Li2ZrO3 [30]. Alkaline 
ceramics have also being reported to show good 
selectivity in separation of CO2 from flue gas with 
Li2ZrO3 Showing no affinity for nitrogen at all 
leading to an infinitely large CO2/N2 selectivity 
ratio [31]. It has also being commonly reported 
that the presence of steam improves the 
performance of these ceramics by dissolution of 
the external shell ultimately leading to an 
increase in absorption rate, absorption capacity, 
and regeneration [32]. Several researches attest 
to this fact such as that carried out by Santillan-
Reyes and Pfeiffer [33] who reported a beneficial 
effect of adding water when absorbing CO2 over 
Na2ZrO3 at low temperature range. 
 

Similarly Ochoa et al [34] investigated the effect 
of steam addition on stability, capacity, and 
regeneration properties of Li2ZrO3, K-doped 
Li2ZrO3, Na2ZrO3, and Li4SiO4 under sorption 
enhanced steam methane reforming (SESMR) 
relevant conditions they reported that the 
presence of steam enhanced absorption/ 
desorption rate whereas a large decay was 
observed under dry conditions which was 
attributed to sintering. 
 

The regeneration of this alkaline ceramics has 
also being studied although only Li2ZrO3 and 

Li4SiO4 have being extensively studied. Reports 
have it that they require significantly lower 
temperature than CaO based sorbents, and as a 
result require low regeneration energy. Although 
the desorption rate of unmodified lithium 
ceramics is low. Li2ZrO3 is the easiest to 
regenerate followed by Li4SiO4 [35] and Na2ZrO3 
having a much lower regeneration rate than 
Li4SiO4 [36]. 

 
Li2ZrO3 and Li4SiO4 have also being proven                
to show good cyclic stability for a limited               
number of cycles (<100) with minimal loss of 
capacity, although not much studies has being 
carried out regarding the stability of other alkaline 
ceramics. More studies are still required on this 
alkaline ceramics to determine cheaper 
precursor sources for these alkaline ceramics as 
they are relatively expensive when compared to 
mineral based sorbents [37]. Studies are 
currently on-going as regards the modification of 
the different properties of this alkaline ceramics 
such as kinetics, efficiency, and working 
temperature. Promising among this modification 
alternatives are the use of dopants, preparation 
of solid solutions, development of novel synthetic 
routes to obtain ceramic with desirable 
properties, and use of eutectic mixture. 
Furthermore each of these ceramic would be 
scrutinized for their individual capture properties 
in the following sections that follows. Additionally 
a summary of their sorption properties is given in 
the Table 1. 
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Table 1. Absorption properties of alkaline ceramics 
 

S/N Ceramic 
Adsorbent 

Calcination 
temperature 
(
o
C) 

CO2 Uptake Gas Composition Ref. 

Ads. Cap. 
(wt%) 

Temp P 
(bar) 

1 Li4SiO4 900 27.0 580 1 4% CO2 38 
2 Li2ZrO3 600 22.0 600 5 100% of CO2 39 
3 Nano 

Li2ZrO3 
600 27.0 575 1 100% of CO2 40 

4 K-Li2ZrO3 - 22.0 550 1 100% of CO2 41 
5 Y-Li2ZrO3 700 29.9 500 1 100% of CO2 42 
6 Promoted 

Li2ZrO3 
850 23.0 550 1 100% of CO2 43 

7 Li4SiO4 
from rice 
husk 

700 30.5 680 1 100% of CO2 44 

8 Li4SiO4 
from 
diatomite 

- 28.6 700 1 100% of CO2 45 

9 Li2CuO2 - 13.6 650 1 100% of CO2 46 
10 Li2CuO2 1000 40.2 875 1 100% of CO2 47 
11 Li4TiO4 - 27.0 900 1 CO2/Ar 48 
12 Li4TiO4 600-1000 42.0 856 1 100% of CO2 49 
13 Li8SiO6 800 42.0 550 1 100% of CO2 50 
14 Li8SiO6 800 52.1 650 1 100% of CO2 51 
15 Na2ZrO3 850 47.5 70 1 100% of CO2 33 
16 Na2ZrO3 850 23.8 550 1 100% of CO2 52 
17 Na2SiO3 700 37.4 50 1 100% of CO2 53 
18 Na2TiO3 850 12.0 610 1 100% of CO2 54 

 
2.1.1 Lithium based adsorbents  
 

Lithium based sorbents has being considered for 
use in CO2 capture due to its ionic mobility and 
it’s affinity for CO2 [55]. These compounds are 
quite promising and have being thoroughly 
investigated for their CO2 adsorption properties. 
Notably among them are LiFeO2 [56], Li2CuO2 
[57], Li2ZrO3 [58], Li8SiO6 [59], and Li4SiO4 [60-
62]. 
 

A. Lithium Orthosilicates (Li4SiO4) 
 

Attention has being drawn to Lithium 
orthosilicates due to their high theoretical CO2 
sorption capacity (36.7 wt %, approximately 8.34 
mmol CO2/ Li4SiO4 g) and good cyclic stability 
[17]. Research shows that Li4SiO4 are high 
temperature CO2 absorbers and can absorb 
different concentrations of CO2 within the 
temperature range of 450-700

0
C but suffers from 

high decomposition temperature (>800
0
C) which 

may require more heat and costly equipment 
ultimately increasing capital and operational cost. 
 
The chemisorption sorption process is limited by 
the rate of the formation and growth of the 

crystals with double-shell structure consisting of 
Li2CO3 and Li2SiO3 as depicted in Fig.5. The 
reaction occurs mainly due to the lithium ion 
mobility in the ceramics; they diffuse from the 
core of the particles to the surface and react with 
CO2 to form Li2CO3. The diffusion of CO2 in the 
solid Li2CO3 is recognised as the rate limiting 
step: 
 

Li4SiO4(s) + CO2 ↔ Li2SiO3(s) + Li2CO3(s) 

 

In a research done by Rodriguez et al [64], 
where they evaluated the CO2 chemisorption 
capacity as a function of CO2 flow rate and 
sorbent particle size they revealed that the CO2 
capture rate is controlled by CO2 diffusion 
through the Gas-film system, whereas at high 
CO2 flows it is controlled by the CO2 
chemisorption reaction rate. After formation of 
the carbonate oxide external shell, the whole 
CO2 capture process is controlled kinetically by 
lithium diffusion. Li4SiO4 also finds application in 
Sorption-enhanced Hydrogen production which 
mainly consists of sorption enhanced steam 
methane reforming or sorption enhanced steam 
ethanol reforming. In these processes,
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Fig. 5. Double-shell mechanism of Li4SiO4 material for CO2 absorption and regeneration [63] 

 

in-situ CO2 removal with Li4SiO4 material as the 
CO2 acceptor shifts the reaction equilibrium to 
hydrogen production, and exothermal absorption 
of CO2 by the Li4SiO4 material provides heat for 
reforming, thus high hydrogen yield can be 
achieved [65]. Despite their excellent CO2 
sorption capabilities at high temperatures, 
Li4SiO4 face certain constraints such as slow 
capture kinetics and poor stability–recyclability 
which limits their application. The slow capture 
kinetics is due to the formation of a lithium 
carbonate shell which limits CO2 diffusion, thus 
limiting kinetic performance. Poor stability occurs 
as a result of sintering which reduces the cyclic 
stability necessary for practical applications. 

 

A lot of research has been done aimed at 
improving the reaction kinetics of this lithium 
ceramics by altering the synthesis routes and 
reducing the particle size of this ceramics since 
one of the limiting steps is the diffusion process, 
which may be avoided or at least reduced by the 
synthesis of smaller particles [66]. Various 
methods such as solid-state reaction method, 
sol-gel method, Precipitation method, 
combustion method etc. have been developed 
for the synthesis of Li4SiO4 sorbents. The solid-
state reaction method is easy and the most 
commonly used technique to synthesize Li4SiO4 
sorbents [67]. In Sol–gel method the lithium and 
silicon precursors are mixed in a liquid phase, 
followed by the formation of a three-dimensional 
gel network by the gelatinized particles and 

finally the drying and calcination of the gel to 
obtain the Li4SiO4 sorbent. Sol–gel method 
facilitates the formation of relatively 
homogeneous material at lower temperatures 
[68]. In precipitation method, the silicon source is 
first mixed with a solution of lithium source and 
the mixture suspension is stirred, dried and 
calcined at high temperatures to produce Li4SiO4 

sorbent [69-74]. In combustion method, the 
silicon source is mixed with the lithium solution 
and the fuel (i.e., citric acid, urea, and glycine) 
followed by vaporization, during which it begins 
to foam and swell and finally burns itself 
(autoignition) due to strong exothermic reaction. 
The charred ash is grinded and calcined at high 
temperatures to produce Li4SiO4 sorbents [75-
76]. 
 
The structures and properties of the synthesized 
lithium silicates is largely a function of the 
synthesis method adopted, type of raw material 
used and the synthesis temperature (synthesis 
temperature affect the micro structure which can 
in turn affect the sorbent performance) [72]. 
Normally the lithium is sourced from lithium 
nitrate, lithium carbonate, lithium acetate and 
lithium hydroxide. The silicon source is derived 
from raw materials like natural silicon containing 
minerals , biomass ashes, fly ashes, zeolite 
based materials, organosilicone compounds, 
silica powder and its different forms like fumed 
silica, amorphous silica gel, colloidal silica, 
aerosol silica, silica sol and quartz powder [77-
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81]. Research also shows that the addition of 
dopants such as Al, Fe, Na, K and Cs increases 
the CO2 uptake of lithium orthosilicate. In an 
experiment carried out by Walther-Dari et al. [82] 
using steel metallurgical slags as silica source 
with and without addition of 10-30wt% K2CO3, he 
observed that the CO2 Capture efficiency 
improved with the addition of K2CO3 because of 
the formation of a eutectic phase between K2CO3 

and Li2CO3, which facilitated CO2 diffusion into 
the material bulk. The best capture capacity 
value (104mg CO2/g material) was obtained 
using the material produced from steel 
metallurgical slag with 20wt% K2CO3. Also 
Olivares-Marin et al. [83] reported that K-doped 
Li4SiO4 obtained using fly ash as source of SiO2 
exhibited a capacity of 101 mg g

-1
 under 

optimum conditions (at 600
0
C with 40 mol % 

K2CO3). 
 
Further studies are focused on decreasing the 
precursor particle size or choosing more 
sintering-resistant precursors to result in a 
smaller product grain size. Such is evident by the 
recent research done by Rajesh Belgamwar et 
al. [84], they synthesized lithium silicate 
nanosheets (LSN) which showed a high CO2 

capture capacity (35.3wt% CO2 capture using 
60% CO2 Feed gas close to the theoretical 
value) with ultra-fast kinetics and enhanced 
stability at 650

0
C. Their work showed that the 

nanosheet morphology of the lithium silicon 
nanosheets allow for efficient CO2 diffusion to 
ensure reaction with the entire sheet as well as 
providing extremely fast CO2 capture kinetics 
(0.22 g g

-1
 min 

-1
). It was also reported that the 

LSNs were stable for at least 200 cycles without 
any loss in their capture capacity or kinetics and 
neither formed a carbonate shell unlike 
conventional lithium silicates which are known to 
rapidly lose their capture capacity and kinetics 
within the first few cycles due to thick carbonate 
shell formation and also due to the sintering of 
sorbent particles. In a similar report by Wang et 
al. [44] who synthesized Li4SiO4-based 
absorbent using rice husk ash as silicon source, 
he reported that the adsorbent showed better 
CO2 sorption capacity (32.4 wt%) and cyclic 
stability compared with pure Li4SiO4 (22.1 wt%), 
due to high pore volume and high surface area. 
 
B. Lithium metazirconates (Li2ZrO3) 
 
The pioneering work of Nakagawa and Ohasi in 
1998 [85], where they investigated the capture of 
CO2 using Li2ZrO3 at high temperatures of (400-
700

0
C) and reportedly captured about 4.5mol/kg 

(28wt%) was what sprung up massive interest in 
lithium zirconates as possible CO2 capture 
adsorbents plus unlike other sorbents that had a 
limited CO2/N2 selectivity, lithium zirconate does 
not absorb nitrogen at all and would result to 
infinitely large CO2/N2 selectivity. Lithium 
zirconates also showed good stability over 
carbonation/calcination cycles. Furthermore, 
lithium zirconates have been used in the CO 
oxidation, showing complete conversion to CO2 
between 450 and 600°C and subsequent capture 
of CO2 that was produced [86]. Similarly to 
lithium silicates Li2ZrO3 also suffers from a slow 
reaction rate due to the formation of Li2CO3 shell 
which prevents the mobility or access of Li ions 
to CO2, hence Ultimately reducing the reaction 
rate almost making them impossible for industrial 
use [87], the mechanism for CO2 adsorption on 
Li2ZrO3 is as depicted in Fig.6. 
  
Recent studies have shown that adding dopants 
such as Iron, Potassium, Sodium and Yttrium to 
Li2ZrO3 increases the CO2 adsorption rate. These 
dopants change the melting point of the system 
to produce a liquid eutectic mixed-salt molten 
shell on the outer surfaces which offers much 
less resistance to CO2 diffusion and 
consequently increasing absorption rate [88]. 

Presence of iron improved the kinetics of lithium 
zirconates and this can be explained based on 
partial iron reduction, implying an oxygen 
release, which promoted the CO2 chemical 
transformation to carbonate ions. Presence of 
Potassium as a dopant increases the CO2 
diffusion rate (which is usually the rate limiting 
step) towards the inner unreacted particles by 
forming a eutectic mixture with Li2ZrO3 at 500

0
C. 

Presence of Yttrium as a Dopant on the other 
hand shifts the rate limiting step for CO2 sorption 
to the diffusion of ions in the ZrO2 formed during 
the adsorption process and did not increase the 
CO2 sorption kinetics of Li2ZrO2 [89]. For 
Lithium–sodium based zirconates, experiment 
show that sodium increased the absorption 
kinetics and the higher the lithium content in the 
mixture the faster the regeneration kinetics [90]. 
 
2.1.2 Sodium based sorbents 
 
The CO2 capture properties of certain                
sodium based compounds were first reported by 
Lopez-Ortiz et al. who stated that Na2ZrO3, 
Na2SbO3, and Na2TiO3 could absorb CO2 in the 
temperature range of 600-700

0
C. Observed that 

the reactivity followed the order Na2ZrO3 > 
Na2SbO3 > Na2TiO3, Na2ZrO3 exhibited better 
absorption rate and inferior regeneration
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Fig. 6. Proposed mechanisms for CO2 sorption on Li2ZrO3 reproduced from [20] 
 
performance compared to Li4SiO4 and Li2ZrO3. 
The following sections that follow give an insight 
on this ceramics. 
 
A. Sodium Meta Zirconate (Na2ZrO3) 
 
With a CO2 adsorption capacity of 23.75wt% and 
a lower cost compared to lithium based oxides 
Na2ZrO3 has gained attention as a good CO2 
adsorbent. They can operate at higher 
temperature plus a higher reaction rate has also 
being observed compared to other lithium based 
adsorbents [91]. Though Na2ZrO3 is able to 
absorb CO2 even at room temperature the best 
temperature for CO2 Absorption on Na2ZrO3 is 
said to be 600

0
C [92].  

 
Na2ZrO3(s) + CO2 (g) ↔ Na2CO3(s) + ZrO2(s) 

 

According to the work of Alcerra-Corte et al. who 
studied the kinetics for the chemisorption of CO2 
on Na2ZrO3 particles in the temperature range of 
150-700

0
C, a fast kinetics was observed 

between 550 and 700
0
C, however at low 

temperatures, kinetics was relatively low and was 
attributed to the sintering effect as well as 
diffusion problems. It was also concluded that 
sodium diffusion was the rate limiting step for the 
process. Jimenez et al [93] suggested that the 
rate limiting step for the CO2 sorption kinetics of 
Na2ZrO3 at a similar temperature and partial 
pressure of 0.4-0.8atm was the surface reaction. 
Further studies have also revealed that the 
presence of steam favours the kinetics of the 
reaction and regeneration because steam 
increases the mobility of alkaline ions and 

therefore accelerates the reactions. In another 
study done by Santillan-Reyes at a temperature 
of 30-70

0
C it was reported that Na2ZrO3 was able 

to absorb 5.8mmol/g of CO2 in the presence of 
water, therefore enabling it‘s CO2 application in 
low temperature condition. 

 

In 2007 Zhao et al. [94] synthesized nanosized 
Na2ZrO3 with well-controlled crystal phase using 
a soft-chemical route. it was reported that 
monoclinic Na2ZrO3 showed much faster CO2 
capture rate than hexagonal Na2ZrO3 even at low 
CO2 partial pressures (0.025 bar). Thus, a higher 
CO2 capture rate is obtained for Nanosized 
Na2ZrO3 due to the dual effect of its crystal size 
and structure showing that reducing particle size 
can help increase the kinetics of the reaction. 
 
B. Sodium meta-silicate (Na2SiO3) 
 
Na2SiO3 has been reported to show a low CO2 

adsorption rate 1-2wt% at temperatures ranging 
from room temperature to 130

0
C, following a two-

step process first: Superficial chemical sorption 
and Sodium Diffusion Process, with sodium 
diffusion process being recognised as the rate 
determining step [95]. 
 
The CO2 absorption rate has also been observed 
to increase with decreasing particle size of 
Na2SiO3 and can be attributed to an increase in 
surface area [96]. Conditions of thermal humidity 
has also being known to increase CO2 
adsorption rate enabling Na2SiO3 absorb up to 
16.39 mmol of CO2/gm of ceramic , much more 
than that absorbed under dry conditions. 
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Synthesis method also affects the CO2 capture 
capacity. CO2 absorption capacity of Na2SiO3 is 
governed by the combined effect of water vapour 
and surface area, in a recent research carried 
out by Rodriguez- Mosqueda et al. [97], involves 
the synthesis of Na2SiO3 using solid-state 
reaction and combustion method. They reported 
that Na2SiO3 sample prepared by the combustion 
method presented a surface area 3 times larger 
than the solid-state reaction sample. He also 
performed different water vapor sorption 
experiments. The experiment showed that, The 
Na2SiO3 sample prepared by the combustion 
method captured up to 8.5 mmol of CO2 per 
gram of ceramic (efficiency of 52%), a 
considerably high CO2 amount among different 
materials. Also, the presence of water vapor 
strongly favored the CO2 chemisorption on 
Na2SiO3. Thus, the recent results support the 
potential of Na2SiO3 as a CO2 Capture sorbent at 
moderate or environmental temperatures. 
 

2.2 Alkali Earth Metals 
 
2.2.1 Calcium Oxide (CaO) 
 
Focus has being placed on CaO as possible 
adsorbents for CO2 due to its availability and its 
ability to absorb CO2 at high temperatures. It has 
a high CO2 Capture (up to 17.8mmol CO2 Per 
gram of sorbent) and can operate at high 
temperature (>600

0
C). 

 
Cao(s) + CO2(g) ↔ CaCO3(g) 

 

In a study conducted by Abanades group [98-99] 
on the cost of calcium oxide for capturing CO2, 
they reported that it would cost 0.0015 dollars 
per mole of CO2 captured with CaO, compared to 
the cost of activated carbons (0.25 dollars), 
zeolites (0.20 dollars) and hydrotalcites (4.00 
dollars) per mole of CO2. Thus, this shows CaO 
is relatively inexpensive. 
 
CaO has being reported to have regeneration 
issues, as the ability of CaO to regenerate the 
carbonate decreases strongly with the increasing 
number of cycles. It is known to have poor 
attrition resistance which is quite common with 
natural sorbents [100-101].  
 
Research such as that done by Baker et al 
proves that the amount of CO2 adsorbed 
dropped significantly as CaO was cycled up to 40 
times and he attributed this decreased capacity 
to a loss of pore volume and sintering, baker also 
reported that carbonation initially occurred very 

rapidly, however the reactivity of the sorbent 
subsequently decreased over time due to the 
formation of a carbonate shell through which the 
rate of reaction was controlled by diffusion 
process. Although current research suggests that 
KMnO4-doped CaO-based sorbent has the 
potential to reverse this trend as Li et al. [102] 
reported a better cyclic carbonation rate and 
conversion over 100 cycles compared with the 
pristine sorbent. The Dopants are able to achieve 
this by controlling the surface area and pores to 
a specific range. In a related experiment Reddy 
and Smirniotis [103] investigated the role of alkali 
metals as dopants for CaO the results were in 
the order of Li < Na < K < Rb < Cs, which 
indicates a possible relationship between 
sorption properties and increase of the atomic 
radii of the alkali metals. 
 CaO has a tendency to react with SO2 and CO2 
at the same time to form both CaCO3 and 
CaSO4(sulphation) this sulphation process 
increases with increasing number of cycles which 
may necessitate the need for desulphurization of 
flue gas before CO2 Capture in post combustion 
applications. The reaction mechanism of this 
sorbents also follows a two-step mechanism, 
where the first step involves kinetically– 
controlled rapid chemical reaction at the 
beginning followed by the diffusion of CO2 

through the product layer formed in the first step 
to reach unreacted CaO core this is the slowest 
step in the process and is dependent on the pore 
size of the sorbents. 
 
Skorfa et al [104] performed an analysis between 
synthetic and natural based CaO based sorbents 
he posited that natural sorbents derived from 
industrial hydrated lime presented promising 
results; the preparation procedure seems not to 
significantly affect activity and stability. They also 
carried out some tests using the most promising 
synthetic Ca-Zr, and Ca-Al and natural pure Cao 
derived from Ca(OH)2 direct calcination and 
MgO- doped Ca(OH)2 , were tested in a fixed 
bed reactor under realistic flue gas feed 
composition, and discovered that the natural 
sorbents presented inferior results. Several 
modifications has being done to improve the 
properties of this calcium based compounds 
which includes modification of precursors, use of 
dopants, Preparation of Nano Sorbents, 
reactivation through steam/water hydration. 
 
Calcium silicate has also being investigated and 
reports shows that it starts to absorb CO2 At 
400

0
C with about 28.72% sorption efficiency 

using 15% CO2 and the rest Nitrogen. However 
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the CO2 Capture capacity also drastically 
decreases from large number of cycles and could 
be attributed to sintering of the material which 
leads to the loss of specific surface area [105]. 
 
2.2.2 Magnesium Oxide (MgO) 
 
MgO has being considered for CO2 capture given 
its high abundance, cost effectiveness, low 
toxicity, and thermodynamic stability of the 
products of the reaction. 
 
MgO + CO2 ↔ MgCO3 (magnesium carbonate) 
 
It finds application in both pre and post 
combustion due to its low regeneration 
temperatures and has being reported to have 
good selectivity for CO2 over N2 in the presence 
of steam. The disadvantages of MgO as an 
adsorbent include low kinetics, poor thermal as 
well as mechanical stability [111-112]. Mayorga 
et al [113] reported a sorption capacity of 
0.13mmol/g(0.57wt%) for MgO under moderate 
temperature and dry environment. Studies have 
also shown that the presence of water catalysed 
the reaction kinetics, together with surface 
properties of MgO (such as surface area, Particle 
size and Porosity).  
 
Research also shows that mesoporous MgO is a 
better CO2 adsorbent than non-porous 
commercial MgO due to high surface area and a 
narrow pore size distribution the role of porosity 
was clearly shown by Bhagiyalakshmi et al.  
[114-118] on carbon templated mesoporous 
MgO, who showed that the mesoporosity 

enhanced CO2 adsorption up to 1.81mmol/g (8 
wt %) at 298k and 2.27mmol/g(10wt%) at 373k 
whereas non porous MgO only displayed 0.23-
45mmol/g(1-2wt%) of adsorption at 298k under 
atmospheric pressure. Investigations has also 
being carried out to improve CO2 adsorption 
capacity using K2CO3 modified MgO, as both 
MgO and K2CO3 can adsorb CO2 in the presence 
of water vapour at low temperatures. The 
modified materials absorbs CO2 effectively over 
a temperature range of 50-100

0
C and can be 

regenerated around 150-400
0
C. 

 
From H2O:- According to the reaction 
 
MgO + H2O ↔ MgO . H2O 
MgO . H2O + CO2 ↔ MgCO3 + H2O 
MgO + CO2 ↔ MgCO3 

 

Although water catalyzes the reaction but the 
formation of MgCO3 layer resists the mobility of 
CO2 molecules to come in contact with the 
unreacted MgO, this means that water vapour 
alone cannot lead to the complete carbonation 
conversion of MgO therefore besides the amount 
of steam, surface properties of MgO such as 
surface area, Particle size, and Porosity are also 
very crucial parameters for the carbonation 
process. 
 
So far, the role of water vapour, porosity, surface 
area and particle size with the carbonation yield 
has been established but factors such as 
carbonation kinetics, sorbent reversibility and 
durability are still not completely resolved and 
thus need to be investigated more. 

 
Table 2. Sorption properties of CaO based sorbents 

 

S/N Ceramic 

Adsorbent 

Calcination 
temperature 

(
o
C) 

CO2 Uptake Gas Composition Ref. 

Ads. 
Cap. 
(wt%) 

Temp 

(Ads) 

P 
(bar) 

1 CaO- based 
mesoporous 
silica 

950 80 580 - 100% of CO2 106 

2 Mesoporous 
Nano crystalline 
CaO 

700 22 600 1 100% of CO2 107 

3 CaO-MgO 800 53 575 - 100% of CO2 108 

4 CaO / 
Ca12Al14O33 

850 41 550 1 20% of CO2 109 

5 NiO-CaO-
Ca12Al14O33 

700 56 500 1 15% of CO2 110 
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Table 3. Sorption properties of various MgO based sorbents 
 

S/N Ceramic  
Adsorbent 

Calcination 
temperature 
(
o
C) 

CO2 Uptake Gas Composition Ref. 

Ads. 
Cap. 
(wt% 
CO2) 

Temp 
(Ads) 

P 
(bar) 

1 Mg/K-SBA-15 300 3.6 20 - - 115 
2 Mg/K-SBA-16 300 2.0 20 1 - 115 
3 Mg/K-MCM-48 300 2.5 20 1 - 115 
4 Na2CO3-MgO 400 15.0 380 - 100% of CO2 116 
5 Mesoporous MgO 800 10.0 100 1 100% of CO2 117 
6 MgO/TiO2 150 2.1 25  - 118 

 

3. OUTLOOK AND CONCLUSION 
 
The potential of metal oxides in ameliorating CO2 
emissions within the purview of sustainable 
chemical and energy production has being firmly 
established, with a lot of research on-going on 
the application of this metal oxides in Sorption 
Enhanced Steam Methane/Methanol Reforming 
in which these oxides are able to catalyse the 
conversion of CO to CO2 and subsequently 
capturing the CO2 produced in the process, Also 
there application as Dual functional materials in 
reactive capture of CO2 in which these metal 
oxides are combined with a hydrogenation 
catalyst for CO2 capture and conversion has 
sparked off alot of interest in this materials. 
These materials, though auspicious quite sadly 
face certain challenges which must be addressed 
before they can be employed commercially. It is 
highly recommended in order to scale –up the 
application of these sorbents that more studies 
should be done in terms of capture capacity, 
reversibility rate, carbonation kinetics, multi-cycle 
durability plus an In-depth analysis of the 
performance of these adsorbents under real life 
flue gas conditions, because research shows that 
some of these sorbents tend to lose their capture 
capacity in the presence of sulphur and Nitrogen 
oxides which are typical components of real life 
flue gas streams. 
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