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ABSTRACT 
 

Microbiome that reside in the human gut are key contributors to host metabolism and are 
considered potential sources of novel therapeutics in metabolic disorders. This review discusses 
the role of gut microbiome in the pathogenesis of obesity, type 2 diabetes mellitus (T2DM), chronic 
kidney disease and cardiovascular disease. Gut microbiome remains quite stable, although 
changes take place between birth and adulthood due to external influences, such as diet, disease 
and environment. Understanding these changes is important to predict diseases and develop 
therapies. In gut heamostasis, Gut microbiome converts high fibres intake into short-chain fatty 
acids like butyrate, propionate and acetate which normalize intestinal permeability and alter de 
novo lipogenesis and gluconeogenesis through reduction of free fatty acid production by visceral 
adipose tissue. This effect contributes to reduce food intake and to improve glucose metabolism. 
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Propionate can also bind to G protein coupled receptors (GPR)-43 expressed on lymphocytes in 
order to maintain appropriate immune defence. Butyrate activates peroxisome proliferator-activated 
receptor-γ (PPAR-γ) leading to beta-oxidation and oxygen consumption, a phenomenon 
contributing to maintain anaerobic condition in the gut lumen. In contrast, diets most especially 
western diet consisting among others of high fat and high salt content has been reported to cause 
gut dysbiosis. This alteration of gut microbiome result to chronic bacterial translocation and 
increased intestinal permeability that can drive a systemic inflammation leading to macrophage 
influx into visceral adipose tissue, activation of hepatic kuffer cells and insulin resistance in type 2 
diabetes. This effect contributes to lower mucus thickness, decrease butyrate and propionate 
producing bacteria, L-cells secrete less gut peptides, lack of PPAR-γ activation lead to higher 
oxygen available for the microbiome at the proximity of the mucosa and increases the proliferation 
of Enterobacteriaceae with commensurate increase in opportunistic pathogens. However, Gut 
microbiome are major biomarker for early prognosis of diabetes and other metabolic disorders. 
 

 
Keywords: Gut microbiome; obesity; diabetes; chronic kidney diseases; cardiovascular diseases. 
 
1. INTRODUCTION 
 
Gut dysbiosis contributes to the development of 
various diseases including cardiovascular 
disease (CVD) [1], obesity [2], type 2 diabetes 
mellitus [3,4], non-alcoholic fatty liver disease 
[5,6] and even some types of cancer [7,8]. Both 
animal and human studies have demonstrated 
that diet can influence the composition and 
function of the gut microbiome [9]. However, 
other factors, including genetics; the mode of 
delivery at birth; the method of infant feeding; 
and the use of medications, especially 
antibiotics, also contribute to the composition and 
function of the gut microbiome [10]. 
 
Diet plays an important role in obesity, in addition 
to other factors [11,12]. Obesity is a predisposing 
element of the metabolic syndrome in the 
development of type 2 diabetes mellitus (T2 DM). 
Obesity is a major risk factor for type 2 diabetes 
which accounts for 90–95% of all diabetes cases 
[13]. Dysbiosis is a state in which the 
homeostasis of the gut microbiome is disrupted, 
often leading to health problems. One of the 
causes of dysbiosis is diet, and studies have 
shown that diet may change the gut microbiome 
and contribute to obesity and diabetes [14]. 
Obesity and T2D are characterized by an altered 
gut microbiome, inflammation, and gut barrier 
disruption [15,16]. Diabetes mellitus is a group of 
metabolic disorders of carbohydrate metabolism 
in which glucose is underutilized, producing 
hyperglycemia and has become a major public 
health concern [17]. It is caused either by 
inadequate production of insulin, or the body's 
improper response to insulin, or both [17]. 
 

There are two major types of diabetes: Types 1 
and 2 diabetes. Diabetes mellitus type 2 (DM2) 

accounts for 90% of all diabetes cases worldwide 
[18]. It is closely related to unhealthy lifestyles, 
overweight and physical inactivity. Unhealthy 
diet, lack of exercise, and other unhealthy 
lifestyle habits are associated with the 
development of diabetes [18]. Type 2 diabetes 
(T2D) is a complex metabolic disorder in which 
islet beta cell failure occurs together with insulin 
resistance where the body becomes resistant to 
the insulin it produces and combination of 
genetic and environmental factors contributes to 
the development of both T1DM and T2DM 
[19,20]. T1D is caused by autoimmune 
destruction of the beta cells of the pancreas, 
representing approximately 10% of all cases of 
diabetes worldwide [19]. At present, lifelong 
insulin therapy is the only treatment for the 
disease [19]. Although the prevalence of T1D is 
<1% in most populations, the geographic 
variation in incidence is enormous, ranging from 
<1/100,000 per year in China to approximately 
40/100,000 per year in Finland [21]. It has been 
estimated that approximately 20 million people 
worldwide, mostly children and young adults, 
have T1D [22]. Studies on type 2 diabetes in 
Finland reports that 46% of type 2 diabetes is 
attributed to heritary while environmental factors 
accounted for 53% [23]. The incidence of T1D is 
increasing worldwide at a rate of about 3% per 
year [24]. Epidemiologic studies have revealed 
no significant gender differences in incidence 
among individuals diagnosed before age 15 [25]. 
There is also a notable seasonal variation in the 
incidence of T1D in many countries, with lower 
rates in the warm summer months, and higher 
rates during the cold winter [26]. 
 
Diabetes can cause many complications if left 
untreated, including cardiovascular disease, 
stroke, and kidney failure [27]. The International 
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Diabetes Federation reports that the world has 
415 million adults with diabetes and 318 million 
people at risk of developing diabetes [28]. 
According to the WHO standard, Nigeria has a 
comparative prevalence of 4.83% with over 
88,681 Diabetes-related deaths [29]. In South 
Eastern Nigeria the prevalence of diabetes 
mellitus is about 6.7% [29]. This study aims to 
explore the effects of gut dysbiosis on metabolic 
disorders. 
 
2. DEVELOPMENT OF THE MICROBIOME 
 
There are different factors influencing the 
development of the microbiome in the early years 
of life, starting with the mode of birth [30], 
breastfeeding or formula-feeding infants, and 
possibly the introduction of solid food [31]. The 
intestinal microbiome stabilizes about 3 years 
after birth, when it resembles the adult 
microbiome and stays relatively stable over time 
[32]. In adulthood, the microbiome can be altered 
by changes in diet [33], as well as by the use of 
several types of medication such as antibiotics 
[34], metformin [35], and even proton pump 
inhibitors [36]. 
 

2.1 Method of Birth 
 
The composition of the gut bacterial community 
is different in infants delivered by cesarean 
section from that of infants born by vaginal 
delivery [38,39]. Infants born by vaginal delivery 
are exposed to the mother's bacteria at birth, 
which influences the infant's gut bacteria and 
stimulates white blood cells and other 
components of the immune system [40]. In 2014, 
the Center for Disease Control (CDC) reported 
that 32.2% of all deliveries in the United States 
were performed by cesarean section [37]. 
Several studies have suggested that infants born 
by cesarean section are at greater risk of 
developing obesity and/or diabetes than those 
born vaginally [41,42,43]. Similarly, a cohort 
study in 672 preschool children who were born 
by cesarean section showed prevalence rates of 
15.6% and 12.9% for overweight and obesity 
respectively [42]. However, opposite findings 
were also reported [44]. 
 

2.2 Infant Feeding 
 
Infant feeding is another important factor for 
establishing the bacterial community in the gut 
because the mother's milk is not sterile [45]. 
Human breast milk has been recognized as a 
source of commensal and potential probiotic 

bacteria that influence the development of infant 
gut bacteria [46]. Human breast milk has been 
reported to contain>700 species of bacteria [47]. 
Although, human milk bacterial communities are 
generally complex and vary individually, the 
median bacterial load is ∼106 bacterial cells/mL 
through time [48]. It appears that Streptococci 
and Staphylococci are predominant bacterial 
genera in human milk [45]; both of these are also 
predominant in the skin microbiome. Therefore, 
human milk may also contain some skin bacteria. 
However, Weissella, Leuconostocus, 
Staphylococcus, Streptococcus and Lactococcus 
are predominant in colostrum samples of infants, 
whereas in milk taken at 1 and 6 months, 
Veillonella, Leptotrichia, and Prevotella increased 
significantly [46] Evidence suggests that the 
transfer of microbiota from mothers to their 
infants affect infant growth and development 
[49,50]. Milk from obese mothers also showed 
more proinflammatory properties [50]. In addition, 
breast milk from mothers who underwent 
cesarean section contained bacteria that were 
different from milk samples from mothers who 
had vaginal deliveries [47]. The bacteria present 
in breast milk, as well as those on the mother's 
skin are among the first microbes to enter the 
infant's body, and they could play an important 
role in health [47]. Breast milk is also a rich 
source of IgA antibodies against different 
pathogens [51,52]. The Borsh-Johnsen et                 
al. [53], also postulated that the lack of 
immunologic protection from insufficient breast-
feeding may increase risk for T1D later                
during childhood. Breast milk contains growth 
factors, cytokines, and other substances 
necessary for the maturation of the intestinal 
mucosa [54]. 
 

2.3 Infections 
 
Interestingly, enteroviral infections can also 
interfere with gut immunoregulation, which may 
explain the epidemiologic associations between 
viral infections and T1D [54,55]. Although the gut 
microbiome affects viral and bacterial infections, 
the reverse is also true [56,57,58]. A human 
study of Clostridium difficile patients and 
asymptomatic carriers with the use of 16S 
ribosomal RNA gene pyrosequencing found that 
both had reduced microbial richness and 
diversity compared with healthy subjects [59,60]. 
C. difficile infection is a typical result of severe 
dysbiosis in the gut microbiome [61,62]. 
Interestingly, transplantation of the gut 
microbiome from healthy donors to infected 
patients increased microbial richness and 
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diversity and it is currently applied clinically 
[63,64]. 
 

2.4 Medications 
 
Increasing evidence suggests that many non 
antibiotic drugs have an impact on the gut 
microbiome [65], including the drugs used to 
treat T2D. Likewise, the gut microbiome   also 
affects the efficacy of drugs [66]. Broad-spectrum 
antibiotics reduce bacterial diversity while 
increasing the abundance of opportunistic 
pathogens and decreasing the number of 
beneficial bacteria [67]. The use of broad-
spectrum antibiotics, such as clindamycin, in 
infants and young children has been found to 
have the longest-lasting effects on the 
composition of the gut microbiome [68]. Early 
antibiotic exposure in neonates can lead to 
microbial dysbiosis, which may be a predisposing 
factor to inflammatory bowel disease [69]. 
Studies in both mice and humans have found 
that the use of antibiotics early in life could 
promote obesity later in life, mediated by the 
alteration of the gut microbiome [70]. 
 
Meformin is routinely used in the control of 
hyperglycemia in T2D. The drug increases the 
insulin sensitivity of body cells, especially fat 
cells, muscle cells, and hepatocytes, while 
preventing the overproduction of glucose by 
hepatocytes [71]. Interestingly, recent studies 
have found that the administration of meformin 
alters the composition of the microbiome        
[71]. 
 

3. DIET 
 
The role of gut microbiome on host metabolism 
has been under explored over the years, 
probably because of metagenomic sequencing 
limitations that have been overcomed in recent 
years [72]. There are reliable evidence to show 
that dietary changes result in substantial and 
rapid changes in the make-up of the gut 
microbiome [73,74]. Everard et al. [16] reported a 
decrease in the population of A. muciniphila in 
obesed mice and those with type 2 diabetes. On 
administration of probiotic feed, A. muciniphila 
normalized its abundance and improved the 
animal’s metabolic profile. Treatment with A. 
muciniphila also reduced fat mass, inflammation, 
and insulin resistance induced by a high-fat diet 
[16]. A fiber-rich diet has been shown to be 
beneficial to health because it modulates the gut 
microbiome [73,74]. Enterotypes were strongly 
associated with long-term diets, particularly       

those with protein and animal fat [75]. Wu              
et al. [14], showed that protein and animal                
fat were associated with Bacteroides,         
whereas carbohydrates were associated with 
Prevotella. 
 

3.1 The Role of Gut Microbiome in 
Immunity 

 
B cells are involved in humoral and cell-mediated 
immunity. They secrete antibodies following 
differentiation into plasma cells, produce 
cytokines, and regulate T cell responses via 
antigen presentation and costimulation [76]. The 
humoral immune response in the gastrointestinal 
tract is mediated by IgA memory B cells and IgA-
producing plasma cells in the gut-associated 
lymphoid tissue (GALT). The protective and 
nutrient-rich environment of the gastrointestinal 
tract accommodates an extremely dense and 
diverse bacterial community that in turn provides 
metabolic advantages and serves as a natural 
defense against colonization with pathogens [77]. 
Gut microbiome act as critical stimuli, playing an 
important role for the maturation of the GALT and 
further induce IgA production by B cells [78]. 
Class switching to IgA-producing plasma cells 
occurs in the Peyer’s patches and lamina 
propria, following T cell-dependent or -
independent mechanisms [78]. The secretory IgA 
(SIgA) in the gut provides a first-line defense 
against pathogens mainly by blocking toxins and 
pathogens from adhering to the intestinal 
epithelium at the earliest steps of the infection 
process [79]. The studies of Endesfelder et al. 
[80], suggest that an increased availability of 
butyrate and propionate in the intestinal tract 
have protective effects against the development 
of T1 DM related autoimmunity. According to 
studies carried out in Finland and Russia, 
Bacteroidetes are associated with higher 
susceptibility to autoimmune disease and 
produce a type of LPS with immunoinhibitory 
properties [81,82]. 
 
The phenomenon may preclude an early 
“immune education” and contribute to the 
development of autoimmune disease [83]. Mucin 
synthesis and Butyrate may play a major role in 
the prevention of autoimmune disease. Brown et 
al. [84], hypothesized that a consortium of 
lactate- and butyrate-producing bacteria in a 
healthy gut may induce sufficient mucin 
synthesis to maintain gut integrity. In contrast, 
non-butyrate-producing lactate-utilizing bacteria 
prevent optimal mucin synthesis, as identified in 
autoimmune subjects [85]. 
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3.2 Gut Microbiome in Diabetes Mellitus 
Type 2 and Obesity 

 
Short-chain fatty acids (SCFAs) such as butyrate 
may protect against diet-induced insulin 
resistance, through the engagement of Gpr43 
and 41 and the release of glucagon-like peptide 
1 (GLP-1), an incretin hormone that can improve 
insulin secretion and resistance as well as 
preserve beta-cell function [86]. 
 
In contrast to the cases of gut dysbiosis, LPS are 
absorbed by enterocytes and they are conveyed 
into plasma coupled to chylomicrons [86]. In this 
way, dietary fats can be associated with 
increased absorption of LPS which in turn can be 
related with changes in the gut microbiome 
distinguished by a decrease in the 
Eubacteriumrectale–C. coccoides group, Gram-
negative Bacteroides and in Bifidobacterium [86]. 
 
This causal role of LPS was demonstrated by 
infusing LPS in mice with a normal diet inducing 
hepatic insulin resistance, glucose intolerance, 
and an increase in the weight of adipose tissue 
[87]. It has been recently shown that the LPS-
induced signaling cascade via Toll-like receptor 4 
(TLR4) impairs pancreatic β-cell function via 
suppressed glucose-induced insulin secretion 
and decreased mRNA expression of pancreas-
duodenum homebox-1 (PDX-1). LPS binds to the 
CD14/TLR4 receptor present on macrophages 
and produces an increase in the production of 
proinflammatory molecules. A rise in LPS levels 
has been observed in subjects who increased 
their fat intake [88,89]. 
 
When LPS injections were administrated to mice 
with a genetic absence of the CD14/TLR4 
receptor they did not develop these metabolic 
characteristics and there was no start of TDM2 or 
obesity, showing the important role of LPS in the 
mechanism of CD14/TLR4 [90]. Moreover, 
knockout CD14/TLR4 mice were even more 
sensitive to insulin than wild type controls [90]. 
LPS can also promote the expression of NF-κB 
(nuclear factor kappa-light-chain-enhancer of 
activated B cells) and activation of the MAPK 
(mitogen-activated protein kinase) pathway in 
adipocytes with several target genes [91]. 
Karlsson et al. [92], reported that an increase in 
the abundance of four Lactobacillus species and 
decreases in the abundance of five Clostridium 
species in Diabetes mellitus type 2 diabetes 
signified that either increase or decrease in this 
gut microbiome might predispose to diabetes 
mellitus. Metagenomic data have revealed that 

patients with type 2 diabetes exhibit a moderate 
degree of gut microbial dysbiosis compared with 
patients with inflammatory bowel disease [93]. 
The proportions of the phylum Firmicutes and 
the class Clostridia are significantly reduced, 
whereas the class of the gram-negative 
Betaproteobacteria is highly enriched in the 
faeces of type 2 diabetic patients compared with 
non-diabetic individuals, and the proportion of 
Betaproteobacteria is positively correlated with 
plasma glucose levels [94]. Interestingly, the 
microbiome of type 2 diabetic patients are 
characterised by the depletion of several 
butyrate-producing bacteria, including 
Clostridium species, Eubacterium rectale, 
Faecalibacterium prausnitzii, Roseburia 
intestinalis and Roseburia inulinivorans [92,93], 
and an enrichment of opportunistic pathogens 
[93]. 
 
Bacteria increased in the gut of type 2 diabetic 
patients also include the sulphate-reducing 
bacteria Desulfovibrio, as well as Lactobacillus 
gasseri, Lactobacillus reuteri and Lactobacillus 
plantarum [103]. Although, diets most especially 
western diet consisting among others of high fat 
and high salt content has been reported to cause 
gut dysbiosis [95]. This alteration of gut 
microbiome producing obesity and insulin 
resistance through chronic bacterial translocation 
due to increased intestinal permeability that can 
drive a systemic inflammation leading to 
macrophage influx into visceral adipose tissue, 
activation of hepatic kuffer cells and insulin 
resistance [95] (Fig. 1). 
 

4. THE GUT MICROBIOME IN DIFFERENT 
METABOLIC ORGANS 

 
Inflammation is commonly involved in a number 
of diseases [94], including atherosclerosis, which 
is a classical chronic inflammatory disease [95]. 
Gut epithelium is the first barrier of the host, 
which protects against the invasion of pathogens 
[96]. Given its critical role in preventing the 
translocation of intestinal content, mainly 
bacterial components, the integrity of the gut 
barrier is essential for maintaining the health of 
the host. Intestinal permeability is associated 
with reduced expression of tight junction 
proteins, including zonula occludens-1 (ZO-1), 
claudin-1, and occludin, and an imbalance 
between intestinal epithelial cell death and 
regeneration [97]. If the intestinal epithelial 
barrier is impaired, the invasion of pathogen 
associated molecular patterns (PAMPs) drives 
an immune response and results in systemic and 
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tissue-specific inflammation. Accordingly, 
impairments to the gut barrier integrity induced 
by gut dysbiosis have been suggested as risk 
factor for chronic inflammation in various 
diseases (ref). It is noteworthy that 
lipopolysaccharide (LPS) and peptidoglycan are 
microbial components that are recognized as risk 
factors for CVD. Lipopolysaccharide is a cell wall 
component of Gram-negative [G (–)] bacteria, 
which has been extensively studied as it is one of 
the PAMPs involved in CVD risk [98]. 
Subsequently, the relationship was gradually 
confirmed by multiple experiments by Mitra et al. 
[99]. In a different study, it was reported that the 
level of circulating endotoxemia was most 
notable in patients with the highest CVD burden 
[87]. Also, Harris et al. [100] found that gut 
dysbiosis suppressed the expression of tight 
junction proteins, leading to an increase in 
intestinal permeability and subsequently the 

translocation of LPS into the blood. Gut 
dysbiosis-derived LPS may play important roles 
by modulation of Toll-like receptors (TLRs) and 
their downstream targets [101]. As part of the 
pattern-recognition receptors family, TLRs can 
recognize bacterial products and modulate the 
host immune system [102]. Circulating LPS can 
bind to cell-surface-receptor complexes 
composed of TLR4 and its co-receptors cluster of 
differentiation 14 (CD14) [103]. Consistently, 
clinical investigations have revealed that 
upregulation of TLRs was associated with 
inflammatory activation in human 
atherosclerosis, and promoted the development 
of atherosclerosis [104]. Fiber-enriched diets 
have been shown to improve insulin resistance in 
lean and in obese subjects with diabetes [105]. 
However, only long-term dietary habits are most 
important in actually shaping the composition of 
the gut microbiome. 

 

 
 

Fig. 1. Bacterial products, changes in adipose tissue lead to insulin resistance and decrease 
insulin release [95] 

Keys: (1)↑ fat and sugar (Western) diet → ↑ bacterial release of lipopolysaccharide (LPS), (2)LPS → 
inflammatory cytokines into portal system, (3)↑ translocation of bacteria and LPS into visceral adipose tissue, ↑ 

inflammatory cytokines, (4)Adipocytes release free fatty acids (FFA), (5)Reduced clearance of inflammatory 
mediators from visceral adipose tissue, (6)↑ LPS, FFA, and cytokines into portal circulation ↓ liver metabolism 

and insulin sensitivity, (7)↑ delivery of LPS, FFA, cytokines into systemic circulation negatively affect B-cell and 
systemic insulin sensitivity 
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In human studies, elevated trimethylamine-N-
oxide (TMAO) has been independently 
associated with prevalent CVD and incident risks 
for Myocardial Infarction, stroke, death, and 
revascularization [104]. Choline is an essential 
dietary nutrient and there is need to consume 
some choline in the diet or else develop a 
deficiency state, which is characterized by fatty 
liver,altered one-carbon methyl donor metabolic 
pathway, and neurologic disorder [106]. An 
obligatory role for gut microbiome in both 
trimethylamine (TMA) and trimethylamine-N-
oxide (TMAO) formation from ingested 
phosphatidylcholine (PC) was confirmed in 
animal model studies, which included germ-free 
mice [107], as well as human clinical 
investigations involving ingestion of egg yolk, 
isotope-labeled PC, and a cocktail of oral 
antibiotics [92]. Recently, the association 
between acute egg yolk ingestion and increased 
plasma and urine TMAO concentrations was 
independently confirmed in humans [56]. The 
conversion from TMA to TMAO requires an 
oxidation step that is mediated by host enzyme 
machinery in the form of flavinmonooxygenases 
(FMOs) [108,109,110]. Gut microbe–produced 
TMA reaches the liver rapidly via the portal 
circulation, where a cluster of hepatic FMO 
enzymes efficiently oxidizes TMA into TMAO 
(Fig. 2). Previous studies have shown that 
subjects with a genetic defect in FMO3 can have 
markedly elevated TMA levels, leading to a 
noxious body odor that characterizes the 
condition (fish odor syndrome or 
trimethylaminuria [TMAU]) [111]. 

 
5. GUT MICROBIOME IN CHRONIC 

KIDNEY DISEASE (CKD) 
 
Gut microbiome produce compounds that are 
normally excreted by the kidneys but can be 
considered as potential uremic retention 
molecules (URM) such as mammalian 
metabolism, microbial products and diet 
[113,114]. The principal role of the colon is to 
absorb salt and water and to provide a 
mechanism for orderly disposal of waste 
products of digestion. Moreover, the colon is 
responsible for salvage of energy and possibly 
nitrogen from carbohydrates and proteins that 
are not digested in the upper gastrointestinal 
tract. This is achieved through the metabolism of 
anaerobic bacteria, a process known as 
fermentation [113]. Fermentation of the amino 
acids tyrosine (obtained usually from consuming 
chicken, beef, brown rice, nuts, fruit, and 
vegetables) and tryptophan (e.g., from beef, fish, 

milk, yogurt, and soy products) by intestinal 
microbiome generates p-cresol and indole 
respectively [115]. After absorption, these 
compounds are further metabolized in the liver to 
generate p-cresylsulfate and p-indoxylsulfate. 
Indoxylsulfate and p-cresylsulfate circulate in 
equilibrium between a free solute fraction and a 
fraction bound to serum proteins. The best 
characterized binding site is albumin, for which 
indoxylsulfate and p-cresylsulfate are competitive 
binding inhibitors [115]. These toxins are 
eliminated mainly by tubular secretion in the 
kidneys and, therefore, are considered to be 
uremic toxins, with increased levels indicative of 
renal impairment and advancing CKD [116]    
(Fig. 3). 
 

Dysbiosis in CKD patients may contribute to 
increased uremic toxin levels that in turn 
contribute to CKD progression. In a study of 268 
patients with CKD, Wu et al. [14] found the 
baseline concentration of indoxylsulfate to be 
predictive of CKD progression. Meijers et al. 
measured p-cresol levels in 499 patients with 
mild-to-moderate CKD and showed that p-cresol 
sulfate levels increased with decreasing 
estimated glomerular filtration rate (GFR) [117]. 
Similarly, an elevated p-cresol concentration was 
associated with increased risk of death in end-
stage renal disease (ESRD) patients treated with 
maintenance hemodialysis [118]. Trimethylamine 
N-oxide (TMAO) is another uremic toxin 
produced by the gut microbiome and its role in 
CKD has also been reported [119]. 
 

CKD also affects the structure of the gut 
microbiome and contributes to dysbiosis due to 
decreased consumption of dietary fibers [120], 
frequent use of antibiotics, slow colonic transit, 
metabolic acidosis, volume overload with 
intestinal wall congestion, intestinal wall edema, 
and oral iron intake [121]. Urea is hydrolyzed by 
gut microbes, resulting in the formation of large 
quantities of ammonia, which affects the growth 
of commensal bacteria and causes imbalance in 
the gut microbiome [122]. 
 

In healthy individuals, gut microbiome are 
classified into different enterotypes based on the 
abundance of specific bacterial groups, which 
are dominated by Bacteroides, Prevotella, or 
Ruminococcus [75]; these enterotypes are 
strongly associated with long-term diets, 
particularly the levels of proteins and animal fat 
(Bacteroides) versus carbohydrates (Prevotella) 
[14]. However, the intestinal microbiome in 
patients with CKD is altered, with lower numbers 
of Lactobacillaceae and Prevotellaceae families 
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(both are considered normal colonic microbiome) 
and 100 times higher Enterobacteria and 

Enterococci species (which are normally present 
in lower proportions [122]. 

 

 
 

Fig. 2. Nutrient/meta-organismal pathway associated with atherosclerosis and major adverse 
cardiovascular events [112] 

 

 
 

Fig. 3. Mechanisms and pathways of dysbiosis in diabetic patients with CKD [122] 
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6. CONCLUSION 
 
Gut microbiome has recently been proposed as 
an environmental factor involved in the control of 
body weight and energy homeostasis. Numerous 
studies suggest that a high-fat diet can lead to 
gut dysbiosis, which contributes to increase in 
Gram negative (Bacteroidetes) and Gram 
positive ratio (Firmicutes). This in turn result to 
low-grade inflammation and insulin resistance 
and, ultimately, obesity, diabetes and other 
metabolic disorders. This evidence supporting 
Brillat-Savarins’ statement that says, “Tell me 
what you eat, and I will tell you what you are. 
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