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Abstract

In this paper, some Wgh inequalities for univalent harmonic analytic functions defined by Wright's genera-
lized hypergeometric (Wgh) functions to be in certain classes are observed and proved. Some consequent

results are also discussed.
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1. Introduction and Preliminaries

Let u and v be real valued harmonic functions in a
simply connected domain D in the complex plane C,
then a continuous function f =u+iv is called a com-
plex valued harmonic map in D . Clunie and Sheil-
Small [1] introduced a class SH of complex valued
harmonic maps f which are univalent and sense-pre-
serving in the open unit disk A= {Z 1Ze (C,|Z| < 1} and
assume a normalized representation h+ g where
h()=3hz"h =1, 9@ =2 g.2"[a[<1 (D)
n=1 n=1
are analytic and univalent in A. Let SH'(a) denotes
the class of maps f =h+3 e SH satisfying the condi-
tion

= f(re'g) -
0 0 00 _Re/ @
8H(arg(f(re )))—Im f(re”) —Re{ ) }>a

for z=re,0<r<1,0<0<27 and 0<a <1, where

#f'(2)=12n"(2)-129'(2).
Denote by TSH the
f =h+3geSH such that

Y2 a@ =Yg, |2
n=2 n=1

Also denote THS" () = SH () NTSH .
We have following result from the work of Jahangiri

[2]:

subclass of function

h(z)=1z
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Lemma 1. Letf =h+geSH,
given by (1), satisfies

D UAEIER R o

n=1 n=0

h(z) and g(z) are

j=2(1

then f is sense preserving, harmonic univalent in A
and f eSH'(a). Furthermore, f eTSH () if and
only if (2) holds.

For some keN={1,23,
and g(z) defined in (1), let

f (2) =h(2)+9,(2) € SH 3

|90 -a) ()

} , corresponding to h(z)

where for ze A,

_ * S nk+1
h (2) = h(z) (1 3 Zh @)
9 (2)= g(z)*( ) Zgnkﬂ Q)

"*' stands for convolution. Since

o0 o0 o0
Z hn Zn Z hnk+1 nk+1 + Z Z hnk+m+1 nk+m+1
n=1

m=1n=0

h.(z) and g, (z) for some k>2 in (3), represent series
of missing terms which increase with k . Involving
f (2), defined in (3), a class SH, () is defined as
follows:

Definition 1. A function f =h+3eSH is said to
be in the class SH, («), if it satisfies the condition

Re{Zf'(z)}>a, 0<a<l, (6)
f . (2)
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where for some keN, f,(z) is defined by (3). Func-
tions in the class SH, (o) are called harmonic starlike
functions with respect to k-symmetric points of order
.

Note that

SH, (&) =SH () , SH, () = SH, (@) and TSH, (@) =
SH, () "TSH, TSH () =SH (a)"TSH. The class
SH, () is studied by Ahuja and Jahangiri in [3] (see also
[4]). They also proved following result in [3].

Lemma 2. Let f =h+geSH, h(z) and g(z) are
given by (1), satisfies

zln{|hn|+|gn|}_azo{| 2n+1| |an+l|} 2(1 a) (7)
then f is sense preserving, harmonic univalent in A
and f eSH (a) . Furthermore, f eTSH(«) if and
only if (7) holds.

Shagsi and Darus in [5,6] proved that for 0<a <1,
keN if feSH,(a), then f, e SH (a) and proved
following result.

Lemma 3. Let f =h+geSH, h(z) and ¢g(z) are
given by (1), satisfies for some ke N,

in{|h”|+|g”|} a2{|hnk+l| |gnk+l|}

n=

2(1-a) (8)

then f is sense preserving, harmonic univalent in A
and f e SH,(«). Furthermore, f eTSH, () if and
only if (8) holds.

Obviously Inequality (8) is a generalized inequality
ensuring f to be in classes SH'(a) and SH (a)
for k=1 and k=2 respectively. We see that if in-
equality (8) holds, inequality (2) must hold for any
0<a<land for a=0both are same. Hence, inequality
8 for keN and 0<a<l , ensures that
f € SH™ () and thus it is used in this study.

If g(z)=0, ze A, we denote SH, (o) =S, () which

(1+0-2e7)
(1-2)

the respective class. The class S,(0)=S, is introduced
by Sakaguchi [8] whose members satisfy the condition

Re{Zh(Z)}>O,ZeA

is studied by Wang et al. [7] for ¢(z) =

h,(2)
where
ELCE C)

Connectivity of hypergeometric functions with har-
monic functions is seen through some of the recent pa-
pers [9-11]. Specially involvement of Wright’s genera-
lized hypergeometric (Wgh) functions is studied in
[12-23]. Some Wgh inequalities for starlike and convex
classes have already been obtained in [21,23] for certain
harmonic functions.
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The Wright’s generalized hypergeometric (Wgh) func-
tion [24,25], for positive real numbers
ai:Aﬁ(izlaza'”: p) and b|:B|(I=1:29"'aq)

a p
with 1+) B —> A >0, is defined by

i=1 i=1

[

(bl,B .

o] (34 2 }

p¥q

B ﬁr(ai +nA)z" ©)
Z':q—,z eC

"I T]r (b, +nB,)n!

i=1

Referring to [26], the series in (9) is absolutely con-
q p
vergent vzeC if 1+) B —-> A >O0andif

i=1 i=1

Mu

q
1+ B -

i=1 i

A =0, it is absolutely convergent for

q q
HBiB' [18°

|Z| p and for |Z| ';l ,
[TA [TA
i=1 i=1

q p _ 1

So-fattnl

i-1 i-1

Involving Wgh functions as defined in (9), we consid-
er a univalent, harmonic function W (z) of the form:

W (z) =H(z2)+G(z) e SH (10)
where
ST @A) (L) | &
"@O=dlra) q+1W“[ (6.8, | &%
(11)
s d. 6.Ci), (LI
c-ofTred [
=ai§nz“,|o|<1 (12)
and
& T(a+(-DA)I(b)
b '_gr(b,+(n 1)B;)I(a,) (13)
& T(c +(n-DC;)I(d))
n '_li:,ll“(di +(n-1)D;)I(c;) (14

Denote for some jeN,=NuU{0} and for any
keN,
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(@ + JRAKA ) (o (43D
(b + JkBj ,kB; )l,q >

\Pé’k [Z]: =¥y [

wéﬁk[z]:sw{(

It is noted that at z=1, corresponding series of
¥ [z], W [z] converge absolutely to W *[1]= 1",

¢+ jkC;, kC; )l’s,(1+ i) ,
(dl + jkD| Py kDI )l,S ’

P [1]= W1, respectively if

(8 -A)>0. >(D

-C;)>0,0r

>
Zq:(Bi -A)=0, ZS:(Di —C,;)=0 and either

i=1

q BikBi s D B kB; s D-kDi
>1 >1, or =1, =
El[ AKA H C kCi H ]I:l[ CikCi
with

S

S(b-a)>1+. 3(d

i=1 i=1

—¢)>1+j. (15

Hence, from (13) and (14), we can easily derive fol-
lowing identities forsome jeN, and keN,

© ©Th) .
(01 s =TTy ¥ 09
0 S d

S (n+1-1), G Hi(()) ; a”
n=j i=1

provided conditions (1) or (2) of (15) hold. The symbol
(4), called Pochhammer symbol for non negative n, is

defined by

LM Gstye(aenc.

(A = T

The object of this paper is to examine some Wgh in-
equalities as a necessary and sufficient conditions for
univalent harmonic analytic functions associated with
certain Wgh functions to be in the function class
SH, () for some k e Nand in particular SH"(a) and
SH (o) . Some consequent results and a convolution
property are also derived.

2. Some Wgh Inequalities

In order to derive Wgh inequalities, we use Lemma 3.
Theorem 1. Let W(z)=H(z)+G(z)e SH be given
by (10), if for

D 3(8-A)>0, X(0

-C;)>0,o0r
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—-C,)=0 and either for

2) g(ai_A):o, >(p,

i=1

q BkBI s _le
some keN, HAIKA' , li:l[ﬁ>l,or
q BikBi s DikD' ] q
[[-%=1. [l =1 with X(b-a)>2,

iz A i=1 Cikc' i=1
d

D(d;—¢;)>2, and for some k e N, Wgh inequality

4 T'(b,
H()(q

—aPo )+
4 T(a) )

(W oW W) <2(1-a) (18)

TR

holds, then W (z) is sense preserving, harmonic univa-
lentin A and W(z) e SH, ().

Furthermore, ~ W,(2) = z[2—@j+% eTSH, (a)

if and only if (18) holds.

Proof. To show W (z) is sense preserving, harmonic
univalent in A and W(z) e SH, () , we need to show
by Lemma 3, that

S, = Z ne, Z k-1t
n=1

|O-||:in§n +0!i:§m+1:|S 2(1—0{). (19)

From the given hypothesis and with the use of identi-
ties (16) and (17) for j=0,1 and for anyk e N, we
observe that

= i(n_l)gn +i6n _aienkﬂ +
n=2 n=1 n=0
|U||:i(n_1)§n +i gn +ai§nk+l:|

@ T(b,)
a (&)
r(d,)

IIHF()

if inequality (18) holds. Furthermore, ifW,(z) e TSH, (o),
by Lemma 3, inequality (19) holds and hence (18) holds.
This proves Theorem 1.
Taking k =1, in Theorem 1, we get following result.
Corollary 1. With the same hypothesis of Theorem 1,
for k=1 if Wgh inequality

[\P”Jrqf‘“ \ngk]+

[qﬂ; + WU g P ] <2(1-a)
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a 1 POl gl
Hr(a)(( —a) q t q)+

=1

(20)
|o |Hr( )((1+a)‘1’2’1 +‘Pls’1)§ 2(1-a),

holds, then W (z) is sense preserving, harmonic univa-
lentin A and W(z) € SH () . Furthermore,

Wl(z):z[Z—@J+%eTSH*(a) if and only if

(20) holds.

Remark 1. Taking A =B, (i=L2,---,q) and
C,=D (i=12,-,
coincides with Theorem 3.1 in [23] for p=1.

S) , the inequality of Corollary 1

Taking k=2 in Theorem 1, we get following result.
Corollary 2. With the same hypothesis of Theorem 1,
for k=2 if Wgh inequality
4 (k)

[1

ion 1(a)
r(d,)

IIHF()

holds, then W(z) is sense preserving, harmonic univa-
lentin A and W(z) e SH ().

(Wo' -y + )+

(P +awl? + ¥l ) <2(1-a) (21)

Furthermore, W, (z) = 2(2— H(Z)j+%eTSHS(0{)
z

if and only if (21) holds.

3. Consequences of Wgh Inequalities

Involving Mittag-Leffler functions [25]:

W [(b(ll,‘é;),);z} > Ellﬁll,dl ()= ¥

real numbers b,B, and d,,D,, we consider a univalent,

Eéfll,bl ()=

. 4
1[( Dl),z} , for positive

dy,

harmonic function E(z) for |o-| <1 of the form:
E(2)=2T(b) Eg', (2)+02T(d)Eg 4 (2)€SH (22
Denote for some jeN,=NuU{0} and keN,
(+ih .
|: (b + jkBy ,kBy ) Z:|’
AP

: 1+,1
corresponding series of Eg'i s (2)

1+j,1
Eve b+ ke, (2) =
1+j,1 _
Ele,d|+jkD1(Z) =
At z=1,

Exo 4, jo, (2) converge absolutely to

1+j,1 _cl+il 1+j,1 1+j,1
Ekgljb] + kB, (1) EkgljblﬂkBl EkE)IJ d, + jkDy (1) EkslJ d, +jkD, »
respectively. Following result can be directly obtained
from Theorem 1.

Copyright © 2010 SciRes.

Corollary 3. Let E(z) be defined by (22), if for some
k e N, inequality

T(b)(Es'y —Elsy +E2'y s )+ o)
|o|T(d)(Ep o, +aBig o +Egla .0 ) <2(1-a),

holds, then E(z) is sense preserving, harmonic univa-
lentin A and E(z) € SH, (). Furthermore,
E(2)=

z(z ~T(b) Eg! (z))+o—z r(d,) Ey, (2) e TSH, (@)

if and only if (23) holds.

Results similar to the Corollaries 1 and 2, for
E(z) and E;(z)can be obtained by taking k=1 and
k=2 respectively in Corollary 3.

On taking A =B, =1,i=1,2,3,---,
i=123,---,5, W(z) reduces to

F(2)=zF,((a]).z)+ozF(([c]).z)eSH, (24)

q and C, =D, =1,

which involve the generalized hypergeometric functions:

(ai’l)l. (L1
(([a ]) Z) q+1 q |: (bqi’l)l,q ,Z:| b

F (D)= | Nz .

Also, if A=B=1,1=1,23,---,qandC, =D, =1,

i=1,2,3,--,s, for some jeN,=NuU{0} and keN ,
we get
q r(b) _ (@)
w14 ) BT,
gr(a.) ‘ (DR -1 (0 e
s F(d.) (C)

P =11+ j)FH* ,
O Hl(di)jk

where

ik ik oy @+ Ky (1+ )
W ([a)‘éﬂ(bﬁjk»k T

_ij (G + JK)y (1+ ),
([ch= IZ:;II_][ ST

] s
provided Y (b-a)>1+j, > (d; -
i=1

i=1

¢)>1+j.

From Theorem 1, we obtain following result.
Corollary 4. Let F(z) be defined by (24), if for

some keN andZ(b a)>2, Z( ¢)>2,

i=1
inequality

1 a
0,1 0,k 1,1 i
R R R

q
i=1 M

AM



468 P. SHARMA

|O'|{FSO’I e Fso,k+ Fsl'l S G JS 2(1—0() (25)

holds, then F(z) is sense preserving, harmonic univa-

lent in A and F(z)eSH,(a) Furthermore,
F(2)= z(z— F, (([ai]),z))+az F, (([c.1),2) € TSH, (@)
if and only if (25) holds.

Results similar to the Corollaries 1 and 2, for
F(z)and F (z)can be obtained by taking k=1 and
k =2 respectively in Corollary 4.

Further, taking q=5s=2,b, =d, =1, in Corollary 4,
we get following result for a harmonic univalent function
defined by Gauss hypergeometric functions.

Corollary 5. Let for positive real wvalues of
a,,a,,b,c,,c,,d, and for |0| <1, a harmonic univalent
function:

G(z)=12,F (a.a,:b;2)+0z,F (c.c,d;52) e SH.

If for some keN and (b-a-a,)>I,
(d,—c,—¢,)>1,
inequality

[l+ﬁ} R (a)-a B (&)

_al_

Cl CZ 0,1 0,k
+]o| HHWJ (gD +ak (¢ ])}

<2(l-a), (26)

holds, then G(z) is sense preserving, harmonic

univalent in A and G(z)eSH, ().
G/(2)=2(2-,F (a,a,:b;2))+02,F (c,.¢,30,32) € TSH, (@)
if and only if (26) holds.

Results similar to the Corollaries 1 and 2, for
G(z)and G,(z) can be obtained by taking k=1 and
k=2 respectively in Corollary 5.

Furthermore,

4. Convolution Property

In this section, we obtain a covolution property for
functions belonging to the class SH, ().

Theorem 2. A function f = h+§ e SH, (a) for some
k eN ifand only if

s (§+1)z_(2a+e§—l)z ~
h(z) {(1—2)2 (l—zk) ]

o [(5 1)2 (2a+§—1)z]¢0’

(1-2) (1-24)

Copyright © 2010 SciRes.

le]=1,&=-1,0<|7 <1.
Proof. From the definition of the function class
SH, (@), f € SH,(«), if and only if

1 {zf (z)_a}iﬂ’
(1-a) | 1 (2) g+l
for |&=1,£=-1,0<|z|<1.

calculations, we get
(§+1)[zf (2)-«a fk(z)}—(f—l)(l—a) f (2)#0.
Using (3), we get

(§+1)[zh'(Z)_zg'(z)—a{h(z)* (l—zk) +9(Z)*(l_zk)H
—(£-1)(1-a){h(D)*——<+g() ¥ ——~ 1 #0

which easily derives the result.
Based on Theorem 2, we get that harmonic functions,

W(2) = H(2)+G(2)
E(z)=zI(b) EY', (2)+ ozl (d,)E, (2), and

Hence by simple

F(z)=zF,((a]).z)+oczF(([c]),z), defined in (10),
(22) and (24) respectively belong to the class SH, (&)

for some k eN ifand only if for
|&]=1,&=-1,0<|7| <1,

H(Z)*[(§+l)z (2a+§—l)z]_

(l—z)2 - (l—zk)

G [(g 1)z +(2a+§—1)z]¢0’

(l—z) (l—z")
2T(by) L, (2) 7z (2a+&-1)z

)2_
(1-z)  (1-2") |
ozI(d,)EL, (2)* (§+1)f+(2a+§_1)2 #0
1,01 _(1_2) (I—Zk)
and
(E+)z (2a+&-1)z
F ) * — _
z q(([al])’z) {(1_2)2 (l_Zk)
o2F, (o D.2)s| )2, ez
(1-2) (l—zk)
respectively hold.
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