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Abstract 
This work presents the “Second-Order Comprehensive Adjoint Sensitivity 
Analysis Methodology (2nd-CASAM)” for the efficient and exact computation 
of 1st- and 2nd-order response sensitivities to uncertain parameters and do-
main boundaries of linear systems. The model’s response (i.e., model result of 
interest) is a generic nonlinear function of the model’s forward and adjoint 
state functions, and also depends on the imprecisely known boundaries and 
model parameters. In the practically important particular case when the re-
sponse is a scalar-valued functional of the forward and adjoint state functions 
characterizing a model comprising N parameters, the 2nd-CASAM requires a 
single large-scale computation using the First-Level Adjoint Sensitivity Sys-
tem (1st-LASS) for obtaining all of the first-order response sensitivities, and at 
most N large-scale computations using the Second-Level Adjoint Sensitivity 
System (2nd-LASS) for obtaining exactly all of the second-order response sen-
sitivities. In contradistinction, forward other methods would require (N2/2 + 
3 N/2) large-scale computations for obtaining all of the first- and second-order 
sensitivities. This work also shows that constructing and solving the 2nd-LASS 
requires very little additional effort beyond the construction of the 1st-LASS 
needed for computing the first-order sensitivities. Solving the equations un-
derlying the 1st-LASS and 2nd-LASS requires the same computational solvers 
as needed for solving (i.e., “inverting”) either the forward or the adjoint linear 
operators underlying the initial model. Therefore, the same computer soft-
ware and “solvers” used for solving the original system of equations can also 
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be used for solving the 1st-LASS and the 2nd-LASS. Since neither the 1st-LASS 
nor the 2nd-LASS involves any differentials of the operators underlying the 
original system, the 1st-LASS is designated as a “first-level” (as opposed to a 
“first-order”) adjoint sensitivity system, while the 2nd-LASS is designated as a 
“second-level” (rather than a “second-order”) adjoint sensitivity system. 
Mixed second-order response sensitivities involving boundary parameters 
may arise from all source terms of the 2nd-LASS that involve the imprecisely 
known boundary parameters. Notably, the 2nd-LASS encompasses an auto-
matic, inherent, and independent “solution verification” mechanism of the 
correctness and accuracy of the 2nd-level adjoint functions needed for the effi-
cient and exact computation of the second-order sensitivities.  
 

Keywords 
Second-Order Comprehensive Adjoint Sensitivity Analysis Methodology 
(2nd-CASAM), First-Level Adjoint Sensitivity System (1st-LASS), 
Second-Level Adjoint Sensitivity System (2nd-LASS), Operator-Type  
Response, Second-Order Sensitivities to Uncertain Model Boundaries, 
Second-Order Sensitivities to Uncertain Model Parameters 

 

1. Introduction 

The earliest use of adjoint operators for computing exactly and efficiently the 
first-order sensitivities of responses of a large-scale linear system comprising 
many parameters has appeared in the report by Wigner [2] on his work on the 
“nuclear pile” (i.e., nuclear reactor) using the linear neutron transport or diffu-
sion equations. Cacuci [2] [3] conceived the rigorous 1st-order adjoint sensitivity 
analysis methodology for generic large-scale nonlinear systems involving opera-
tor responses, comprising functional-type responses as particular cases. Repre-
sentative developments of the adjoint sensitivity analysis methodology were re-
viewed in the books by Cacuci [4] and Cacuci, Ionescu-Bujor and Navon [5]. 
The first-order adjoint sensitivity analysis methodology was extended by Cacuci 
[6] [7] [8] to the “Second-Order Adjoint Sensitivity Analysis Methodology 
(2nd-ASAM)” for linear and nonlinear systems, to enable the exact and efficient 
computation of all of the second-order sensitivities (i.e., functional derivatives) 
of model responses to parameters. However, all of the above works, as well as the 
vast majority of the application of the first- and second-order adjoint sensitivity 
analysis methodology considered that the phase-space location of the physical 
model’s boundary is perfectly well known, and did not investigate the conse-
quences of imprecisely known (i.e., uncertain) model boundaries. 

Komata [9] seems to have been the first author to use an adjoint equation (in 
this case; the adjoint neutron diffusion equation) for investigating the effects of 
perturbations in boundary conditions for simple idealized geometries in neutron 
diffusion theory. First-order perturbation theory in conjunction with adjoint 
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operators was subsequently used [10]-[15], either formally or in conjunction 
with variational formulations, to obtain approximate first-order sensitivities to 
boundary parameters of responses that were linear functionals (or ratios thereof) 
of the neutron flux in the context of linear neutron diffusion or neutron trans-
port problems. Furthermore, the works referenced in the foregoing have consi-
dered the computation of response sensitivities to model parameters separately 
(rather than simultaneously) from the computations of response sensitivities to 
imprecisely known domain boundary parameters. Also, none of the above works 
considered responses that are simultaneously functions of the forward and ad-
joint state functions. 

Noteworthy, Cacuci [16] [17] has presented methodologies for the exact 
computation of 1st- and 2nd-order sensitivities of responses that are functionals of 
both the forward and the adjoint fluxes in a multiplying nuclear system with 
source. However, these works [16] [17] have specifically considered the neutron 
transport equation (rather than generic linear problems) within precisely known 
domains, without considering response sensitivities to uncertain domain para-
meters. 

The aim of this work is to present the novel “Second-Order Comprehensive 
Adjoint Sensitivity Analysis Methodology (2nd-CASAM),” which has the follow-
ing features that generalize and extend all previously published works on this 
topic: 

2) The system response considered within the 2nd-CASAM framework is 
an operator-valued response that depends on both the forward and adjoint 
state-functions. Functional-valued responses are subsumed as particular cases. 

2) The 2nd-CASAM framework enables the efficient and exact computation of 
the 1st- and 2nd-order response sensitivities not only to uncertain model parame-
ters but also to uncertain domain boundaries of generic linear systems. 

This work is structured as follows: Section 2 presents the mathematical 
framework of the generic linear physical system comprising imprecisely known 
parameters and boundaries. Section 3 presents the mathematical framework of 
the 2nd-CASAM. Section 4 offers concluding remarks. An accompanying work 
[18] presents an illustrative application of the general 2nd-CASAM methodology 
to a paradigm model of generic particle/radiation transmission and/or evolution 
which has fundamental applications in many fields, including nuclear engineer-
ing (e.g., radiation detection, chemical reprocessing of spent reactor fuel, ra-
dioactive decay, etc.). 

2. Mathematical Modeling of Response-Coupled Forward  
and Adjoint Linear Systems Comprising Uncertain  
Responses, Parameters and Boundaries 

For the mathematical derivations to be presented in this work, the vectors are 
column vectors unless explicitly stated otherwise. Bold letters will be used to 
denote matrices and vectors. Transposition will be indicated by a dagger ( )†  
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superscript. A linear physical system is generally represented by means of uN  
coupled operator equations of the form  

( ) ( ) ( )
1

, , , 1, , ,
uN

ij j i u x
j

L Q i Nϕ
=

= = ∈Ω∑ x x x xα α  in which the operators ( )ijL α   

act linearly on the state functions ( )ju x . In matrix form, a linear system can be 
written as follows: 

( ) ( ) ( ), , ,L x= ∈ΩL x x Q x xα ϕ α .                 (1) 

The quantities appearing in the Equation (1) are defined as follows: 
2) ( )†

1, , Nα
α α α  denotes a Nα -dimensional column vector whose 

components are the physical system’s imprecisely known parameters, which are 
subject to uncertainties; Nα∈α , where Nα

  denotes a Nα -dimensional 
subset of the set of real scalars. The vector Nα∈α  is considered to include 
any imprecisely known model parameters that may enter into defining the sys-
tem’s boundary in the phase-se space of independent variables. The symbol “  ” 
will be used to denote “is defined as” or “is by definition equal to.” 

2) ( )1, , x
x

N
Nx x ∈x   

 denotes the xN -dimensional phase-space position 
vector, defined on a phase-space domain denoted as xΩ  which is defined as 
follows: ( ) ( ){ }; 1, ,u

x i i i xx x x i NΩ −∞ ≤ ≤ ≤ ≤ ∞ =

 α α . The lower boun-
dary-point of an independent variable is denoted as ( )ix α , where the super-
script “  ” denotes “lower” (e.g., the inner radius of a sphere or cylinder, the 
lower range of an energy-variable, etc.), while the corresponding upper boun-
dary-point is denoted as ( )u

ix α , where the superscript “u” denotes “upper” 
(e.g., the outer radius of a sphere or cylinder, the upper range of an ener-
gy-variable, etc.). A typical example of “boundaries that depend on imprecisely 
known parameters” is provided by the boundary conditions needed for models 
based on diffusion theory, in which the respective “flux and/or current condi-
tions” for the “boundaries facing vacuum” are imposed on the “extrapolated 
boundary” of the respective spatial domain. As is well known, the “extrapolated 
boundary” depends not only on the imprecisely known physical dimensions of 
the problem’s domain, but also on the medium’s microscopic transport cross sec-
tions and atomic number densities. For subsequent derivations, it is convenient to 
define the “vectors of endpoints” ( ) ( ) ( ) ( )

†

1 , , , ,
xi Nx x x  x   

  α α α α   

and ( ) ( ) ( ) ( )
†

1 , , , ,
x

u u u u
i Nx x x  x   α α α α . The boundary of xΩ , which will  

be denoted as x∂Ω , comprises all of the endpoints ( )x α  and ( )ux α  of the 
respective intervals on which the components of x  are defined, i.e.,  

( ) ( ){ }u
x∂Ω ∪x x

 α α . 
3) ( ) ( ) ( )

†

1 , , Nϕ
ϕ ϕ 
 x x x ϕ  denotes a Nϕ -dimensional column vector 

whose components represent the system’s dependent variables (also called “state 
functions”); 

4) ( ) ( ) ( )
†

,1 ,, , , , ,L L L N QQ Q
ϕ

  ∈ Q x x x α α α E  denotes a  
Nϕ -dimensional column vector defined on a vector space denoted as QE , 

whose elements represent inhomogeneous source terms that depend either li-
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nearly or nonlinearly on α ; the components of LQ  may be operators, rather 
than just functions, acting on α  and x ; 

5) ( ) ( ) ( )1, , , , ,NL L
ϕ

 
 L x x x α α α  denotes a Nϕ -component column 

vector whose components are operators (including differential, difference, 
integral, distributions, and/or infinite matrices) acting linearly on ϕ  and non-
linearly on α . 

6) All of the equalities in this work are considered to hold in the weak (“dis-
tributional”) sense, since the right-sides (“sources”) of Equation (1) and of other 
various equations to be derived in this work may contain distributions (“genera-
lized functions/functionals”), particularly Dirac-distributions and derivatives 
and/or integrals thereof. 

When differential operators appear in Equation (1), a corresponding set of 
boundary and/or initial conditions, which are essential to define the domain of 
( ),L x α , must also be given. Since this work considers only systems that are li-

near in the state function ( )xϕ , the accompanying boundary and/or initial 
conditions must also be linear in ( )xϕ , which means that they can be 
represented in operator form as follows: 

( ) ( ) ( ) ( ) ( ) ( ), , , , .u u u
L L x     − = ∈∂Ω     B x x x x C x x x   0α α ϕ α α α α   (2) 

In Equation (2), the operator ( ) ( ), , ; 1, , ; 1, ,L ij B uB i N j N  = = B x x  α α  
is a matrix comprising, as components, operators that act linearly on ( )xϕ  
and nonlinearly on α ; the quantity BN  denotes the total number of boundary 
and initial conditions. The operator ( ) ( ) ( )

†

1, , , , ,
BL NC C  C x x x α α α  is a 

BN -dimensional vector comprising components that are operators acting, in 
general, nonlinearly on α . 

The nominal solution of Equations (1) and (2) is denoted as ( )0 xϕ , and is 
obtained by solving these equations at the nominal parameter values 0α . In 
other words, the vectors ( )0 xϕ  and 0α  satisfy the following equations: 

( ) ( ) ( )0 0 0, , , ,x= ∈ΩL x x Q x xα ϕ α               (3) 

( ) ( ) ( ) ( )
( ) ( )

0 0 0 0 0

0 0

, ,

, , .

u u
L

u
L x

   
   
 − = ∈∂Ω 

B x x x x

C x x x

 

 0

α α ϕ α α

α α
           (4) 

Equations (3) and (4) represent the “base-case” or nominal state of the physi-
cal system. Throughout this work, the superscript “0” will be used to denote 
“nominal” or “expected” values. 

The vector-valued function ( )xϕ  is considered to be the unique nontrivial 
solution of the physical problem described by Equations (1) and (2). The linear 
operator ( ),L x α  is considered in this work to admit an adjoint operator, 
which will be denoted as ( )* ,L x α . The specific form of the adjoint operator 

( )* ,L x α  depends upon the specific inner product and associated Hilbert space 
chosen for defining it. In view of Equations (1) and (2), the adjoint operator 

( )* ,L x α  is most often defined in a Hilbert space (which will henceforth be de-
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noted as ϕH ) endowed with the following inner product, denoted as 
( ) ( )

( )
,a b

ϕ
ϕ ϕ , between two the vectors ( )a

ϕ∈ϕ H  and ( )b
ϕ∈ϕ H , each having 

square integrable components and the same structure as the uN -dimensional 
column vector ( )xϕ : 

( ) ( )
( )

( ) ( )

( )

( )

( )

( )

( )

( )

( ) ( ) ( ) ( )
( )

( )

1

1

1 2
1

1

, ... ... d d d d

d .

uu u
Ni x u

x

i Nx

u
ix

i

xx x N
a b a b

i i i N
ix x x

xN
a b

i x

x x x x
ϕ

ϕ ϕ
=

=

 
 
 

⋅

∑∫ ∫ ∫

∏ ∫ x x x

  



  



αα α

α α α

α

α

ϕ ϕ

ϕ ϕ

     (5) 

In Equation (5), the “product” notation [ ]
( )

( )

1
d

u
ix

i

xN

i
i x

x
=
∏ ∫



α

α

 compactly denotes the  

respective multiple integrals, while the dot indicates the “scalar product of two 
vectors” defined as follows: 

( ) ( ) ( ) ( ) ( ) ( )

1

uN
a b a b

i i
i
ϕ ϕ

=

⋅ ∑x x ϕ ϕ .                  (6) 

Formally, the inner product introduced in Equation (5) defines a self-dual 
Hilbert space, which shall be denoted as ϕH . It is important to note that the 
inner product defined in Equation (5) is continuous in α , holding at any value 
particular value of α  in the neighborhood of the nominal parameter values 

0α , including at 0α . 
The formal adjoint operator ( )* ,L x α  is defined through the following rela-

tionship, which holds for an arbitrary vector ( ) ϕ∈xψ H : 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ){ }1*, , , , ; ;
x

P
ϕ ϕ ∂Ω
= +x L x x L x x xψ α ϕ α ψ ϕ ϕ α ψ   (7) 

In Equation (7), the formal adjoint operator ( )* ,L x α  is the u uN N×  matrix 

( ) ( ) ( )* *, , , , 1, , ,ji uL i j N  = L x x α α                 (8) 

comprising elements ( )* ,jiL x α  obtained by transposing the formal adjoints of 

the operators ( ),ijL x α , while ( ) ( ){ }1 ; ;
x

P
∂Ω

ϕ α ψ  denotes the associated  

bilinear form evaluated on x∂Ω . The adjoint state function ( )xψ  is the solu-
tion of an adjoint system which can be written as follows: 

( ) ( ) ( )* , , , ,A x= ∈ΩL x x Q x xα ψ α                   (9) 

where the source ( ) ( ) ( )
†

,1 ,, , , , ,A A A NQ Q
ϕ

 
 Q x x x α α α  for the adjoint equ-

ation is usually related to the system response under consideration. The domain 
of ( )* ,L x α  is determined by selecting appropriate adjoint boundary and/or 
initial conditions, represented here in operator form as follows: 

( ) ( ) ( ) ( ) ( ) ( ), , , , .u u u
A A x     − = ∈∂Ω     B x x x x C x x x   0α α ψ α α α α  (10) 

In Equation (10), the subscript “A” indicates “adjoint,” and the letter “B” in-
dicates “boundary and/or initial conditions.” The nominal value of the adjoint 
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state function ( )xψ  will be denoted as ( )0 xψ , and is obtained by solving the 
adjoint system at the nominal parameter values 0α : 

( ) ( ) ( )* 0 0 0, , , ,A x= ∈ΩL x x Q x xα ψ α              (11) 

( ) ( ) ( ) ( )
( ) ( )

0 0 0 0 0

0 0

, ,

, , .

u u
A

u
A x

   
   
 − = ∈∂Ω 

B x x x x

C x x x

 

 0

α α ψ α α

α α
           (12) 

The system response (i.e., result of interest) associated with the problem mod-
eled by Equations (1) and (2) is typically a real-valued nonlinear operator (func-
tion) of the system’s forward and adjoint state-functions (i.e., dependent va-
riables) and parameters, denoted as ( ) ( ), ; ;R   x x xϕ ψ α , which can be gener-
ally represented in the form 

( ) ( ) ( ) ( ), ; ; , ; ; ,R F   =   x x x x x xϕ ψ α ϕ ψ α           (13) 

where ( ), ; ;F xϕ ψ α  is a suitably differentiable function with respect to its ar-
guments. 

3. The Second-Order Comprehensive Adjoint Sensitivity  
Analysis Methodology (2nd-CASAM) 

As has been already mentioned in the foregoing, the model and boundary para-
meters are considered to be imprecisely known quantities. Their true values may 
differ from their nominal values by quantities denoted as ( )1, , Nα

δ δα δα α , 
where 0

i i iδα α α− . Since the forward and the adjoint state functions ( )xϕ  
and ( )xψ  are related to the model and boundary parameters α  through Eq-
uations (1), (2), (9) and (10), it follows that variations δα  in the model and 
boundary parameter will cause corresponding variations  

( ) ( ) ( )
†

1 , , Nϕ
δ δϕ δϕ 

 x x x ϕ  around the nominal value ( )0 xϕ  of the  

forward state function, as well as variations ( ) ( ) ( )
†

1 , , Nϕ
δ δψ δψ 

 x x x ψ  
around the nominal value ( )0 xψ  of the adjoint state function. In turn, the 
variations in the model’s parameters, boundaries and state functions will induce 
variations in the system’s response. For the derivations to follow, it is convenient 
to define the following vectors in the combined phase-space of state-functions, 
model and boundary parameters: 1) the vector ( ) ( ) ( ) †

, ;  e x x x ϕ ψ α , com-
prising as components the state functions and parameters; 2) the vector 

( ) ( ) ( )
†0 0 0 0, ,  e x x x ϕ ψ α  of nominal values of the state functions and pa-

rameters; 3) the vector ( ) ( ) ( ) †
, ;δ δ δ  h x x x ϕ ψ α  of variations  

( ) ( ) ( )0δ −x x xϕ ϕ ϕ , ( ) ( ) ( )0δ −x x xψ ψ ψ , and 0δ −α α α  in the 
state functions and parameters around their respective nominal values. The 
2nd-CASAM formalism underlying the computation of the 1st-order sensitivities 
of the response ( ), ;R ϕ ψ α  is presented in Section 3.2, while the mathematical 
methodology for computing the 2nd-order sensitivities is presented in Section 
3.2. 
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3.1. Derivation of the 1st-Level Adjoint Sensitivity System  
(1st-LASS) for Computing Exactly and Efficiently the 1st-Order  
Response Sensitivities to Model and Boundary Parameters 

As shown by Cacuci [2] [3], in front of the sentence, the most general definition 
of the 1st-order total sensitivity of the operator-valued model response 
( ), ; ;R xϕ ψ α  to variations  
( ) ( ) ( ) †

, ;δ δ δ  h x x x ϕ ψ α  around the nominal values  
( ) ( ) ( )

†0 0 0 0, ,  e x x x ϕ ψ α , respectively, is provided by the first-order Ga-
teaux-variation ( )0 ; ;Rδ e h x  of ( ), ; ;R xϕ ψ α , which is defined as follows: 

( ) ( )0 0 0 0

0

d; ; ; ; ; ,
d

R F
ε

δ εδ εδ εδ
ε =

  + + +   
e h x x ϕ ϕ ψ ψ α α        (14) 

for ε ∈F , where F  denotes the field of real scalars, and all (i.e., arbitrary) 
vectors ( ) ( ) ( ) †

, ;δ δ δ  h x x x ϕ ψ α  in a neighborhood ( )0 ε+e h  around 
( ) ( ) ( )

†0 0 0 0, ,  e x x x ϕ ψ α . The G-differential ( )0 ; ;Rδ e h x  is an operator 
defined on the same domain as ( );R e x , has the same range as ( );R e x , and 
provides the total 1st-order sensitivity of ( );R e x  with respect to variations in 
the model’s parameters and state functions. The G-differential ( )0 ; ;Rδ e h x  sa-
tisfies the relation ( ) ( ) ( ) ( )0 0 0; ; ; ; ;R R Rε δ+ − = + ∆e h x e x e h x h x , with  

( )
0

lim ; 0
ε

ε ε
→
 ∆ = h x . 

The existence of the G-variation ( )0 ; ;Rδ e h x  does not guarantee its numer-
ical computability. Numerical methods most often require that ( )0 ; ;Rδ e h x  be 
linear in h  in a neighborhood ( )0 ε+e h  around 0e . The necessary and suf-
ficient conditions for the G-variation ( )0 ; ;Rδ e h x  of a nonlinear operator 
( );R e x  to be linear in h  in a neighborhood ( )0 ε+e h  around 0e , and thus 

admit a total first-order G-derivative, are as follows:  
1) ( );F e x  must satisfy a weak Lipschitz condition at 

0e ;            (15) 
2) ( );F e x  must satisfy the following condition for 1 2, ; ε∈ ∈h h E F : 

( ) ( ) ( ) ( ) ( )0 0 0 0
1 2 1 2; ; ; ;F F F F oε ε ε ε ε+ + − + − + + =e h h x e h x e h x e x .   (16) 

Numerical methods (e.g., Newton’s method and variants thereof) for solving 
Equations (1) and (2) also require the existence of the 1st-order G-derivatives 
of original model equations, in which case the components of the operators 
which appear in these equations must also satisfy the conditions described in 
Equations (15) and (16). Of course, if the first-order G-derivatives of the sys-
tem’s response do not exist, the computation of higher-order response sensitivi-
ties (G-derivatives) would be moot. Therefore, the conditions described in Equa-
tions (15) and (16) will henceforth be considered to be satisfied by the operators 
underlying the physical system, in which case the partial G-derivatives of ( )R e  
at 0e  with respect to ϕ , ψ  and α  exist. These derivatives are row vectors  

defined as 
( ) ( ) ( )

1

; ; ;
, ,

N

R F F

ϕ
ϕ ϕ

 ∂ ∂ ∂
 

∂ ∂ ∂  

e x e x e x
 

ϕ
,  

( ) ( ) ( )
1

; ; ;
, ,

N

R F F

ϕ
ψ ψ

 ∂ ∂ ∂
 

∂ ∂ ∂  

e x e x e x
 

ψ
, and  
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( ) ( ) ( )1; ; , , ; NR F F
α

α α ∂ ∂ ∂ ∂ ∂ ∂ e x e x e x α , respectively, so that the 

first-order G-variation ( )0 ; ;Rδ e h x  can be written in the form 

( ) ( ){ } ( ){ }0 0 0; ; ; ; ; ; ,
direct indirect

R R Rδ δ δ= +e h x e h x e h x          (17) 

where 

( ){ } ( )

( )0

0 ;
; ; ,

direct

F
Rδ δ

 ∂ =  ∂   e

e x
e h x α

α
               (18) 

( ){ } ( )

( )
( ) ( )

( )
( )

0 0

0 ; ;
; ; .

indirect

F F
Rδ δ δ

   ∂ ∂   +   
∂ ∂      e e

e x e x
e h x x x ϕ ψ

ϕ ψ
   (19) 

The notation { }( )0e  indicates that the quantity within the braces is to be 

evaluated at ( ) ( ) ( )
†0 0 0 0, ,  e x x x ϕ ψ α . The quantity ( ){ }0 ; ;

direct
Rδ e h x  in 

Equation (18) is called the “direct-effect term” because it can be computed after 
the base-case values 0e  become available. On the other hand, the “indi-
rect-effect term” ( ){ }0 ; ;

indirect
Rδ e h x  defined in Equation (19) can be quanti-

fied only after having determined the variations ( )δ xϕ  and ( )δ xψ  in terms 

of the variations δα . The first-order relationship between the variations 
( )δ xϕ  and δα  is determined by determining the G-differentials of Equations 

(1) and (2). Thus, applying the definition of the G-differential to Equations (1) 
and (2) yields the following equations: 

( ) ( ) ( ) ( )10 0 0, , ; , ,L xδ δ= ∈ΩL x x Q xα ϕ ϕ α α            (20) 

( ) ( ) ( ){ }1 0 0 0, ; ; , , .u
L xδ δ  = ∈∂Ω B x x x 0ϕ α α α ϕ α          (21) 

where the superscript “(1)” indicates “1st-Level” and the letter “B” indicates “boun-
dary and/or initial conditions,” and where the following definitions were used: 

( ) ( ) ( ) ( )

( )0

1 0 0, ; ,L
L δ δ

  ∂ −  
 

∂   e

Q L
Q 

α α ϕ
ϕ α α α

α
         (22) 

( ) ( ){ }( )
( ) ( )

( )
( ){ }( )

( ) ( )

( )

( ) ( )

( )

0

0

0

0

0

1 0, ; ; ,

.

u

u
L

L L
L

u
L

u

x

L

x

δ δ

δ δ

δ

δ

=

=

  ∂ −   + ∂  

   ∂ ∂  +   ∂∂    

   ∂ ∂  +   ∂∂    

e

e
e

x e

x e

B x x

B C
B

B x
x

B x
x











ϕ α ϕ α

α ϕ α
α α ϕ

α

α ϕ α
α

α

α ϕ α
α

α

        (23) 

The partial G-derivatives appearing in Equation (22) are matrices defined as 
follows: 
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( )

,1 ,1

1

, ,

1

,

u u

L L

N
L

L N L N

N

Q Q

Q Q

α

α

α α

α α

∂ ∂ 
 ∂ ∂ ∂  
 ∂
∂ ∂ 

  ∂ ∂ 

Q



   



α
α

                (24) 

( )

( ) ( )

( ) ( )

1, 1,
1 1

1

, ,
1 1

1

.

u u

u u

u u

N N

j j j j
j j

N

N N

N j j N j j
j j

N

L L

L L

α

α

ϕ ϕ

α α

ϕ ϕ

α α

= =

= =

    
∂ ∂    

    
 ∂ ∂
  ∂    

∂  
    ∂ ∂    
    

 ∂ ∂ 

∑ ∑

∑ ∑

L



   



α α

α ϕ
α

α α

      (25) 

The partial G-derivatives that appear in Equation (23) are also matrices, hav-
ing structures and components similar to those defined in Equations (24) and 
(25). 

The first-order relationship between the variations ( )δ xψ  and δα  is de-
termined by taking the G-differentials of Equations (9) and (10), which yields 
the following system of equations: 

( ) ( ) ( )* 0 (1) 0 0, , ; , ,A xδ δ= ∈ΩL x x Q xα ψ ψ α α           (26) 

( ) ( ) ( ){ }1 0 0 0, ; ; , , .u
A xδ δ  = ∈∂Ω B x x x 0ψ α α α ϕ α        (27) 

where the superscript “(1)” indicates “1st-Level,” the letter “A” indicates “ad-
joint,” the letter “B” indicates “boundary and/or initial conditions,” and where 
the following definitions were used: 

( ) ( ) ( ) ( )

( )0

*
1 0 0, ; ,A

A δ δ
  ∂ −  
 ∂   e

Q L
Q 

α α ψ
ψ α α α

α
        (28) 

( ) ( ){ }( )
( ) ( )

( )
( ){ }( )

( ) ( )

( )

( ) ( )

( )

0

0

0

0

0

1 0, ; ; ,

.

u

u
A

A A
A

u
A

u

x

A

x

δ δ

δ δ

δ

δ

=

=

  ∂ −   + ∂  

   ∂ ∂  +   
∂∂    

   ∂ ∂  +   
∂∂    

e

e
e

x e

x e

B x x

B C
B

B x
x

B x
x











ψ α ψ α

α ψ α
α α ψ

α

α ψ α
α

α

α ψ α
α

α

        (29) 

The system of equations comprising Equations (20), (21), (26) and (27) are 
called the “1st-Level Forward Sensitivity System” (1st-LFSS). In principle, the 
1st-LFSS could to be solved for each possible vector of parameter variations δα
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in a neighborhood around 0α  to obtain ( )δ xϕ  and ( )δ xψ  as functions of 
δα . In turn, the functions ( )δ xϕ  and ( )δ xψ  thus obtained could be used in 
Equation (17) to compute the total response sensitivity ( )0 ;Rδ e h . Computing 
the (total) response sensitivity ( )0 ;Rδ e h  by using the δα -dependent solu-
tions ( )δ xϕ  and ( )δ xψ  of the 1st-LFSS is called the Forward Sensitivity 
Analysis Method/Procedure (FSAM). From the standpoint of computational 
costs and effort, the FSAM would require 2Nα  large-scale computations to 
solve the 1st-LFSS. Therefore, the FSAM is advantageous to employ only if, in the 
problem under consideration, the number Nα  of model and boundary para-
meters is considerably less than the number of responses of interest. This is 
rarely the case in practice, however, since most problems of practical interest are 
characterized by many model parameters and comparatively few responses. In 
such situations, it is not economical to employ the FSAM since it becomes pro-
hibitively expensive to solve repeatedly the δα -dependent 1st-LFSS in order to 
determine the variations ( )δ xϕ  and ( )δ xψ  for all possible variations δα . 

In most practical situations, the number of model parameters exceeds signifi-
cantly the number of responses of interest. In such cases, the exact computation 
of the 1st-order response sensitivities can be performed most efficiently by using 
the 1st-order adjoint sensitivity analysis methodology introduced by Cacuci [2] 
[3] and extended to 2nd-order by Cacuci [4] [5] [6], which expresses the indirect 
effect defined in Equation (35) in terms of a suitably defined 1st-level adjoint 
function, thus eliminating the need to compute the variations ( )δ xϕ  and 

( )δ xψ  by solving the 1st-LFSS. As has been first shown by Cacuci [3], the ad-
joint sensitivity analysis methodology cannot be applied directly to an opera-
tor-valued response, but only to responses that are functionals (i.e., scalar-valued 
operators) of the state functions. For this purpose, the operator-valued response 
( ), ;R ϕ ψ α  is expressed through its generalized Fourier (spectral) expansion 

( ) ( ) ( )
0

; ,
NF

f
f

R F f
=

= ∑e e p x                    (30) 

where the Fourier (spectral) coefficients ( );F f e  are functionals of the para-
meters, the forward and adjoint state variables, defined as follows: 

( ) ( ) ( )
( )

( )

( )

( )

( )

( )1

1

1; d d d .

uu u
Ni x

x

i Nx

xx x

f i N
x x x

F f F x x x∫ ∫ ∫e e p x
  

    

αα α

α α α

      (31) 

and where the quantities ( )fp x  are the basis functions (e.g., orthogonal poly-
nomials, trigonometric functions, etc.) chosen for the domain xΩ . Although 
the expansion/summation in Equation (30) comprises in principle infinitely 
many terms, only a finite number, denoted as NF, of terms will be computed in 
practice. It is therefore important to choose the basis-functions ( )fp x  so as to 
minimize the total number of terms NF that would be needed to reproduce the 
response ( )R e  within an a priori chosen error criterion. In particular, if the 
model response is ab initio simply a functional (as opposed to a function or op-
erator) of the forward and/or adjoint functions ϕ , ψ , then the expansion in 
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Equation (31) would contain just the single 0f =  term. The nominal value of 
the functional defined in Equation (31) is denoted as follows: 

( ) ( ) ( )
( )

( )

( )

( )

( )

( )0 0 0
1

0 0 0
1

0 0
1; d d d .

u u u
i Nx

x

i Nx

x x x

f i N
x x x

F f F x x x∫ ∫ ∫e e p x
  

    

α α α

α α α

      (32) 

The 1st-order G-differential of the response ( ), ;R ϕ ψ α  defined in Equation 
(30) is 

( ) ( ) ( )0 0

0
; ; ; ; ,

NF

f
f

R F fδ δ
=

= ∑e h x e h p x                (33) 

where the functional ( )0; ;F fδ e h  has the following expression: 

( )

( ) ( )
( )

( )

( ){ } ( ){ }

0

0

0

0 0 0

1
0

0 0

; ;

d , ; d
d

; ; ; ; ,

u
i

x

i

xN

f i
i x

dir ind

F f

F x

F f F f

εδ

εδ
ε

δ

εδ εδ εδ
ε

δ δ δ

+

= +
=

 
 + + + 
  

= +

∏ ∫

e h

p x

e e h





α α

α α

ϕ ϕ ψ ψ α α

α

    (34) 

with the “indirect-effect term” ( ){ }0; ;
ind

F fδ δe α  defined as 

( ){ }
( ) ( ) ( ) ( )

( )( )

( )0

0 0

0

1

; ;

; ; ; ;
d ,

u
i

x

i

ind

xN

i f f
i x

F f

F f F f
x

δ

δ δ
=

    ∂ ∂ +    ∂ ∂     
∏ ∫

e

e h

e e
p x p x





α

α

α α
ϕ ψ

ϕ ψ

  (35) 

and the “direct-effect term” ( ){ }0; ;
dir

F fδ δe α  defined as 

( ){ } ( ) ( )
( )( )

( )

( )( ) ( )( ) ( ) ( )

( )( )

( )

( )( ) ( )( ) ( ) ( )

0

00

0

0 0

0

1

1 1

; ;
; ; d

d ; ., ,. , ., ,. ;

d ; ., ,. , ., ,. ;

u
i

x

i

u
i

xx

i

xN

i fdir i x

x uNN
ju u u

i j j f j
j i xi j

j
i j j f j

F f
F f x

x
x F f x x x

x
x F f x x x

δ δ δ

δ

δ

=

= =
≠

 ∂ 
 

∂  

 ∂    +     ∂  

 ∂
   −    ∂

∏ ∫

∑∏ ∫

e

e

e
e p x

p α

p α







  



α

α

α

α

α
α α

α

α
ϕ α ψ α α α

α

α
ϕ α ψ α α α

α ( )( )

( )0

0 01 1
.

u
i

xx

i

xNN

j i xi j
= =

≠

 
 
  

∑∏ ∫
e

α

α

(36) 

The appearance of the variations δϕ  and δψ  in the indirect-effect term 
( ){ }0; ;

ind
F fδ e h  defined in Equation (35) can be eliminated by expressing the 

right-side of Equation (35) in terms of adjoint functions that are the solutions of 
a 2nd-Level Adjoint Sensitivity System (2nd-LASS) which is constructed following 
the steps outlined by Cacuci [4] [5] [6]: 

1) Introduce a Hilbert space, denoted as ( )1H , having as elements 
two-component vectors of the form ( ) ( ) ( ) ( ) ( ) ( ) ( )†1 1 1 1

1 2,  ∈ a x a x a x H , with 
square integrable components having the same structure as the Nϕ

-dimensional vectors ( )xϕ  and/or ( )xψ . The inner product between two  

vectors ( ) ( ) ( ) ( ) ( ) ( ) ( )†1 1 1 1
1 2,  ∈ a x a x a x H  and  
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( ) ( ) ( ) ( ) ( ) ( ) ( )†1 1 1 1
1 2,  ∈ b x b x b x H  will be denoted as ( ) ( ) ( ) ( )

( )
1 1

1
,a x b x  and 

is defined as follows: 

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

( )

2
1 1 1 1

1 1

2
1 1

1 1

,

d .
u
ix

i

j j
j

xN

j j i
j i x

a b x

ϕ=

= =

⋅

=

∑

∑∏ ∫

a x b x a x b x

x x




α

α

        (37) 

In particular, the inner product defined in Equation (37) also holds at the no-
minal parameter values 0α . 

2) Using Equation (37), construct the inner product of Equations (20) and 
(26) with a vector ( ) ( ) ( ) ( ) ( ) ( ) ( )†1 1 1 1

1 2,  ∈ x x xψ ψ ψ H  to obtain the following 
relation: 

( )

( )
( )

( )
( ) ( )

( )

( )

( ) ( )
( ) ( )

( ) ( )

0

0

†1
1

*1
2

1

† 11
1

1 1
2

1

,

; ;
,

; ;
L

A

δ
δ

δ

δ

 
     
            

 

    =            

e

e

L
L

Q
Q

αψ ϕ
ψαψ

ϕ α αψ
ψ ψ α α

0
0

            (38) 

The relation expressed by Equation (38) is continuous in the neighborhood of 
the nominal values ( ) ( ) ( )

†0 0 0 0, ,  e x x x ϕ ψ α . 
3) Using the definition of the adjoint operator ( )* ,L x α  provided in Equation 

(7) makes it possible to recast the left-side of Equation (38) into the following form: 

( )

( )
( )

( )
( ) ( )

( )
( )

( )

( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }

0

0

†1
1

*1
2

1

† 1*
1

1
2 1

1 1 10
1 2

,

0
,

0

; ; ; , .
x

P

δ
δ

δ
δ

δ δ
∂Ω

 
     
            

 

     =             

 +  

e

e

L
L

L
L

x x x x

αψ ϕ
ψαψ

ψϕ α
ψ α ψ

α ψ ψ ϕ ψ

0
0

        (39) 

where ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 1 10
1 2; ; ; ,

x

P δ δ
∂Ω

 
 x x x xα ψ ψ ϕ ψ  denotes the associated bi-

linear form evaluated on x∂Ω . 
4) Require the right-side of Equation (35) and the first term on the right-side 

of Equation (39) to represent the same functional, which is accomplished by re-
quiring that 

( )
( )

( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( )
( )

0

0

1*
1

1
2

; ;
0

,
0 ; ;

f

f

F f

F f

  ∂
      ∂      =         ∂          ∂  

e

e

e
p x

xL
L ex p x

α
ψα ϕ

α αψ
ψ

    (40) 

which implies that the following system of equations is to be satisfied in the 
weak (distributional) sense: 
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( ) ( ) ( ){ }( )
( ) ( )

( )
0

0

1*
1

; ;
, ; , ,f x

F f
f

 ∂ = ∈Ω 
∂  e

e

e
L x x p x x

α
α ψ

ϕ
    (41) 

( ) ( ) ( ){ }( )
( ) ( )

( )
0

0

10
2

; ;
, ; , ,f x

F f
f

 ∂ = ∈Ω 
∂  e

e

e
L x x p x x

α
α ψ

ψ
    (42) 

Since the right-sides of Equations (41) and (42) depend on the index f, it fol-
lows that the functions ( ) ( )1 ;f xϕ  and ( ) ( )1 ;f xψ  will also depend on the in-
dex f, which means that they will be distinct for each value of 1, ,f NF=  , a 
fact that has been emphasized by showing the index f in the arguments of these 
functions. 

5) Determine the adjoint boundary and/or initial conditions for the functions 
( ) ( )1 ;f xϕ  and ( ) ( )1 ;f xψ , represented in operator form as 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }( )0

1 1 1
1 2; ; , , , ; , ,A xf f  = ∈∂Ω  e

B x x x x x0ϕ ψ ψ ψ α     (43) 

where the superscript “(1)” indicates “1st-Level.” The boundary and/or initial 
conditions represented by Equation (43) are obtained by requiring that they sa-
tisfy the following two criteria: 

a) They must be independent of unknown values of δϕ , ( )δ xψ  and δα . 
b) The substitution of the boundary and/or initial conditions represented by 

Equations (21), (27) and (43) into the expression of the bilinear concomitant  
( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 1 10

1 2; ; ; ,
x

P δ δ
∂Ω

 
 x x x xα ψ ψ ϕ ψ , must cause all terms containing  

unknown values of δϕ  and ( )δ xψ  in this bilinear concomitant to vanish. 
The selection of the boundary conditions for the functions ( ) ( )1 ;f xϕ  and 

( ) ( )1 ;f xψ , based on the two criteria mentioned above, eliminates the appear-
ance of the unknown values of the variations ( )δ xϕ  and ( )δ xψ , and conse-
quently reduces the bilinear concomitant  

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 1 10
1 2; ; ; ,

x

P δ δ
∂Ω

 
 x x x xα ψ ψ ϕ ψ  to a residual quantity that con-

tains boundary terms involving only known values of δα , the index f and the 
nominal parameter values 0α . This residual quantity will be denoted by

( ) ( )1 0ˆ ; ;P f δα α , which is linear in δα  and can be therefore written in the form 

( ) ( )
( ) ( )1 0

1 0

1

ˆ ; ;ˆ ; ; .
N

i
i i

P f
P f

α δ
δ δα

α=

∂
=

∂∑
α α

α α              (44) 

In general, the residual quantity ( ) ( )1 0ˆ ; ;P f δα α  does not automatically va-
nish, although it may do so in particular instances. By considering extensions 
of ( ),L x α  and ( )* ,L x α , ( ) ( )1 0ˆ ; ;P f δα α  could be forced to vanish, if ne-
cessary. 

6) The system comprising Equations (41)-(43) will be called the First-Level 
Adjoint Sensitivity System (1st-LASS) and the functions ( ) ( )1

1 ;f xψ  and 
( ) ( )1
2 ;f xψ  will be called the first-level adjoint sensitivity functions. It is impor-

tant to note that the 1st-LASS is independent of the variations δα  in the model 
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and boundary parameters. It is noteworthy that the function ( ) ( )1
1 ;f xψ  satis-

fies an “adjoint-type” operator equation, i.e., Equation (41), while the function 
( ) ( )1
2 ;f xψ  satisfies “forward-type” operator equation, i.e., Equation (42). The 

operator equations underlying the 1st-LASS are to be solved using the nominal 
values 0e  of the model’s parameters and state functions. By continuity, how-
ever, Equations (41)-(43) are valid not only at the nominal values 0e , but also 
within a neighborhood e  of 0e . 

7) Using the right-side of Equation (38) to replace the left-side of Equation 
(39), replacing the right-sides of Equation (40) into the right-side of Equation 
(39), and recalling that the boundary conditions in Equations (21), (27), and (43) 
have reduced the bilinear concomitant  

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 1 10
1 2; ; ; ,

x

P δ δ
∂Ω

 
 x x x xα ψ ψ ϕ ψ  to the residual quantity 

( ) ( )1 0ˆ ; ;P f δα α , yields the following form for Equation (39): 

( ) ( ) ( ) ( ){ }( )
( ) ( ) ( ) ( ){ }( )

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( )
( )

0 0

0

0

1 1 1 1
1 2

1 0

, , , ; , , , ;

; ;ˆ ; ; ,

; ;
, .

L A

f

f

f f

F f
P f

F f

ϕ ϕ

ϕ

ϕ

δ δ

δ δ

δ

+

∂ 
= +  ∂ 

∂ 
+  ∂ 

e e

e

e

x Q x Q

e
x p x

e
x p x

ψ ϕ α α ψ ψ α α

α
α α ϕ

ϕ

α
ψ

ψ

  (45) 

8) The second term on the right-side of Equation (45) is actually the indi-
rect-effect term defined in Equation (35), so that Equation (45) can be re-written 
as follows: 

( ){ } ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }( )

( ) ( ) ( ) ( ){ }( )
( ) ( )

0 0

1 10 0
1 2

1 1 1 1
1 2

1 0

; ; ; , ; , ;

, , , ; , , , ;

ˆ ; ; , 1, , .

ind ind

F A

F f F f f

f f

P f f NF

ϕ ϕ

δ δ δ

δ δ

δ

 
 

= +

− =

e e

e h e ψ x ψ x α

x Q x Q





ψ ϕ α α ψ ψ α α

α α

 (46) 

As the right-side of Equation (46) indicates, all unknown values of have been 
eliminated from the expression of the indirect effect term, ( ){ }0; ;

ind
F fδ e h  by 

having replaced the variations δϕ  and ( )δ xψ  with functions that depend on 
the 1st-level adjoint functions ( ) ( )1 ;f xϕ  and ( ) ( )1 ;f xψ . The identity  

( ){ } ( ) ( ) ( ) ( ){ }1 10 0; ; ; ; ; ; ;
ind ind

F f F f fδ δ δ 
 e h e x x α ϕ ψ  in Equation (46) ex-

plicitly indicates that the indirect-effect term now depends on the 1st-level ad-
joint functions ( ) ( )1 ;f xϕ  and ( ) ( )1 ;f xψ  rather than on the unknown values 
of the variations δϕ  and ( )δ xψ . 

9) Inserting the results provided in Equations (22), (28) and (44) into Equa-
tion (46) yields the following expression for the indirect-effect term: 
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( ) ( ) ( ) ( ){ }
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( )( )

( )

( ) ( )

0

0 0

1 10
1 2

1 1
1 1

1 2
1 1

1 0

; , ; , ;

, ; , ;
, , d

ˆ ; ;
, 1, , .

u
i

x

i

ind

xNN
F A

i
i i i ix

i
i

F f f

f f x

P f
f NF

α

δ δ

δ δ
α α

δ
δα

α

= =

 
 

  ∂  = ⋅ + ⋅  
∂ ∂   

∂ − =
∂ 

∑ ∏ ∫
α

α e

e x x

Q Q
x x





ψ ψ α

ϕ α α ψ α α
ψ ψ

α α

(47) 

Adding the results obtained in Equation (47) to the direct-effect term ex-
pressed by Equation (36) yields the following expression for the total 1st-order 
sensitivity ( ) ( ) ( ) ( )1 10

1 2; , ; ,F f fδ  
 e x xψ ψ  of the spectral expansion coefficient 

( ); , ;F f ϕ ψ α :  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
11

1

1 10
1 2

1 1 10
1 2

1

; , ; ,

; , ; , , 1, , .
N

ii
i

F f f

F f f f NF
α

δ

δα
=

 
 

 = = ∑

e x x

e x x 

ψ ψ

ψ ψ
       (48) 

where the quantity ( ) ( ) ( ) ( ) ( )
1

1 1 10
1 2; , ; ,iF f f 

 e x xψ ψ  denotes the 1st-order partial 
sensitivities (G-derivatives) of the functional ( ); , ;F f ϕ ψ α  with respect to the 
model/boundary parameters iα , evaluated at the nominal values of the 1st-level 
adjoint functions and model and boundary parameters, and is given by the fol-
lowing expression, for each 1, ,f NF=  : 

( ) ( ) ( ) ( ) ( )

( ) ( )
( )

( ) ( )

( )( )

( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

( )( )

( )

( )( ) ( )( )

1

0

00 0

0

0 0

1 1 10
1 2

1

1

1 1
1 1

1 2
1

; , ; ,

ˆ; ;
d

, ; , ;
, , d

d ; .. .. , .. .. ;

u
i

x

i

u
i

x

i

i

xN

i f
i i ix

xN
F A

i
i i ix

u u
i j j f j

F f f

F f P f
x

f f x

x F f x x x

α α

δ δ
α α

=

=

 
 

 ∂ ∂    −   
∂ ∂     

 ∂ + ⋅ + ⋅ 
∂ ∂  

 +  

∏ ∫

∏ ∫

e e

e

e x x

p x

Q Q
x x

p







α

α

α

α

ψ ψ

α α

ϕ α α ϕ α α
ψ ψ

ϕ α ψ α α ( ) ( )

( )( )

( )

( )( ) ( )( ) ( ) ( )

( )( )

( )

0

0 0

0

0 0

1 1

1 1
d ; .. .. , .. .. ; .

u
i

xx

i

u
i

xx

i

x uNN
ju

j i ixi j

xNN
j

i j j f j
j i ixi j

x

x
x F f x x x

α

α

= =
≠

= =
≠

 ∂     ∂  

 ∂    −     ∂  

∑∏ ∫

∑∏ ∫

e

e

α

p







  

α

α

α

α

α

α
ϕ α ψ α α α

(49) 

In particular, contributions to the sensitivities ( ) ( ) ( ) ( ) ( )
1

1 1 10
1 2; , ; ,iF f f 

 e x xψ ψ  
with respect to the specific parameters that characterize the imprecisely known 
model’s domain boundary can arise from the second term of the right-side of 
Equation (49), i.e., the boundary term ( ) ( )1ˆ ; ;P f δα α , and from the last two 
terms on the right-side of Equation (49) involving the boundary end-points 

( )jx α  and ( )u
jx α . 
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3.2. Derivation of the 2nd-Level Adjoint Sensitivity System  
(2nd-LASS) for Computing Exactly and Efficiently the 2nd-Order  
Response Sensitivities to Model and Boundary Parameters 

The 2nd-order total sensitivity, denoted as ( ) ( )2 0
1 2; ,Fδ e h h , of the functional 

( ); , ;F f ϕ ψ α  is provided by the 2nd-order G-differential of ( ); , ;F f ϕ ψ α  to 
variations ( ), ;δ δ δh  ϕ ψ α  in the model/boundary parameters and state func-
tions around the respective nominal values ( )0 0 0 0, ;=e ϕ ψ α . The 2nd-order to-
tal sensitivity ( ) ( )2 0

1 2; ,Fδ e h h  is defined inductively as “the total first-order 
G-variation (or 1st-order total G-differential) of the 1st-order total response vari-
ation (or 1st-order G-differential),” as follows: 

( ) ( ) ( )
1

2 0 0
1 2 1 1 2

1 0

d; , ; ,
d

F F
ε

δ δ ε
ε

=

  +   
e h h e h h

         (50) 

for 1 2,ε ε ∈F , and all (i.e., arbitrary) vectors of variations , 1,2i i =h  around 
0e . The total 2nd-order sensitivity ( ) ( )2 0

1 2; ,Fδ e h h  is bilinear in the vectors of 
variations , 1,2i i =h , and will exists if and only if the 1st-order partial sensitivi-
ties ( ) ( ) ( ) ( ) ( )

1

1 1 1; ; ; ;iF f f 
 e x xϕ ψ  satisfy the conditions expressed in Equations 

(15) and (16) in a neighborhood e  of 0e . In order to proceed, it will be as-
sumed that this is indeed the case. For the derivations to follow, it is convenient to 
introduce the vectors ( ) ( ) ( ) ( )

†1 1; ; ; ;f f 
 g e x x ϕ ψ , comprising as components 

the vectors of model parameters, forward and adjoint state functions, as well as the 
1st-level adjoint functions. The nominal value of the vector g  will be denoted as 

( ) ( ) ( ) ( )
†1,0 1,00 0 ; ; ; ;f f 

 g e x x ϕ ψ , and the variations around 0g  will be de-
noted as 0δ −g g g . Using the definition provided in Equation (50), the 
1st-order G-differential ( ) ( )1

1 0 ;iFδ δg g  of the functional ( ) ( )
1

1
iF g  defined in Eq-

uation (49) can be computed, for each 1 1, ,i Nα=  , in the usual manner, namely: 
( ) ( ) ( ) ( ){ } ( ) ( ){ }

( ) ( ) ( ) ( ) ( )( )
1 1 1

1

1 1 10

1 1,0 1 1,0 10 0 0

0

; ;

d , ; , ;
d

i i idir ind

i

F f F f F f

F
ε

δ δ δ δ

εδ εδ εδ εδ εδ
ε =

+

 + + + + + 
 

g g 

 ϕ ϕ ψ ψ ϕ ϕ ψ ψ α α
(51) 

where ( ) ( ){ }1

1
i dir

F fδ  denotes the “direct-effect term”, while ( ) ( ){ }1

1
i ind

F fδ  de-
notes the “indirect-effect term,” which are defined as follows: 

( ) ( ){ }
( ) ( ) ( ) ( ) ( )

( )

1

1

0

1 1 1

1
; ; ; ;

,
i

i dir

F f f
F fδ δ

  ∂  
 

∂   g

e x x


ϕ ψ
α

α
         (52) 

( ) ( ){ }
( ) ( ) ( )

( )
( )

( )

( )
( )

( )

1 1 1 1
1

0

1 1 1 1
1 1 1

1 1
.i i i i

i ind

F F F F
F fδ δ δ δ δ

 ∂ ∂ ∂ ∂ + + + 
∂ ∂ ∂ ∂   g

 ϕ ψ ϕ ψ
ϕ ψ ϕ ψ

   (53) 

For notational simplicity, the arguments of the functional  
( ) ( ) ( ) ( ) ( )
1

1 1 1; ; ; ;iF f f 
 e x xϕ ψ  have been omitted in Equation (53). The index f, 

has been kept in the argument of the direct and indirect-effect terms in order to 
serve as a reminder that the 2nd-order sensitivities ( ) ( )1

1 0; ;iF fδ δg g  are distinct 
for each 1, ,f NF=   and each 1 1, ,i Nα=  . Since the direct-effect term, 
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( ) ( ){ }1

1
i dir

F fδ , is independent of: 1) variations δϕ  and δψ  in the forward 
and adjoint state functions; and 2) variations ( )1δϕ  and ( )1δψ  in the 1st-level 
adjoint functions, itcan be computed immediately at this stage, without needing 
any additional large-scale computations. On the other hand, the “indirect-effect  
term”, ( ) ( ){ }1

1
i ind

F fδ , cannot be computed at this stage because the variations 

( ) ( )( )1 1, , ,δ δ δ δϕ ψ ϕ ψ  are not available. The variations δϕ  and δψ  could be  

determined by solving the 1st-LFSS, which is computationally expensive. Fur-
thermore, the variations ( )1δϕ  and ( )1δψ  are the solutions of the system of 
equations obtained by taking 1st-order G-differentials of the 1st-LASS, i.e., Equa-
tions (41)-(43), which yields the following equations: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( )
( ) ( ) ( )

( )
( ) ( )( ){ }( )

0

0

0

2 2
1*

1

1*2
1

2 1
1 1

; ;
;

;

; ; ; ; ; , ,

f f

f

x

F f F f
f

F f

f

δ δ δ

δ

δ

 ∂ ∂ − − + ∂ ∂ ∂ ∂  

  ∂∂  = − ∂ ∂ ∂  

∈Ω

g

g

g

e e
p x x p x x L x

L xe
p x

Q x

ϕ ψ α ψ
ϕ ϕ ψ ϕ

α ψ
α

ϕ α α

ϕ ψ ψ α α
 

(54) 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( )
( ) ( ) ( )

( )
( ) ( )( ){ }( )

0

0

0

2 2
1

2

12
2

2 1
2 2

; ;

;

; ; ; ; ; , ,

f

x

F f F f

F f

f

δ δ δ

δ

δ

 ∂ ∂ − − + 
∂ ∂ ∂ ∂  

  ∂∂  = − 
∂ ∂ ∂  

∈Ω

g

g

g

e e
x x L x

L xe
p x

Q x

ϕ ψ α ψ
ϕ ψ ψ ψ

α ψ
α

ψ α α

ϕ ψ ψ α α

    (55) 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }( )
( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( )
( ) ( )

( ) ( )

( ) ( ) ( )( )
( ) ( )

( ) ( )
( ) ( ) ( )( )

( )

0

0

1 1 1
1 2

1 1 1 1 1 1
1 2 1 2

1 1 1
1 2 1

11
1

1 1 1 1 1 1
1 2 1 21

21
2

; ; , , , ;

; ; ; ; ; ; ; ;

; ; ; ;
,

,

; ; ; ; ; ; ; ;
,

,

, .

A

A A

A

A A

x

f f

f
f

f
f

δ

δ δ

δ

δ δ

 
 

∂ ∂ +
∂ ∂

∂
+

∂

∂ ∂ + + 
∂∂ 

= ∈∂Ω

g

g

B x x x x

B B

B
x

x

B B
x

x

x



0

ϕ ψ ψ ψ α

ϕ ψ ψ ψ α ϕ ψ ψ ψ α
ϕ ψ

ϕ ψ

ϕ ψ ψ ψ α
ψ

ψ

ϕ ψ ψ ψ α ϕ ψ ψ ψ α
ψ α

αψ

 (56) 

Equations (54)-(56) together with the 1st-LFSS constitute the 2nd-Level For-
ward Sensitivity System (2nd-LFSS). For further developments, it is convenient to 
write Equations (20), (26), (54) and (55) in the following matrix form: 

( ) ( ) ( ) ( ){ }( )
( ) ( ){ }( )0 0

2 2 2; ; , ,xf f= ∈Ω
g g

L g u x S g x           (57) 
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where 
( ) ( ) ( )

( )

( )
( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2

4 4

*

2 2
*

2 2

; ;

; ;
,

; ;

ij

f f

f f

f

F f F f

F f F f

×
 
 

 
 
 
 ∂ ∂
 − −

∂ ∂ ∂ ∂ 
 

∂ ∂ − − ∂ ∂ ∂ ∂ 

L g x L

L
L

e e
p x p x L

e e
p x p x L





0 0 0
0 0 0

0

0

α
α

α
ϕ ϕ ψ ϕ

α
ϕ ψ ψ ψ

    (58) 

( ) ( )

( )
( )

( ) ( )
( ) ( )

( ) ( )

( ) ( )
( ) ( )

( ) ( )( )
( ) ( )( )

1

1

2 2
2 11

1 11

1 2 1
2 2 2

; ;

; ;
, ; ,; ; ; ; ;

; ; ; ; ;

F

A
f f

f

δδ
δδ

δδ

δ δ

 
   
   
   
   
   
    

 

Qx
Qx

u x S g Qx

x Q

 

ϕ α αϕ
ψ α αψ

ϕ ψ ψ α αψ

ψ ϕ ψ ψ α α

   (59) 

Since the source-terms of the 2nd-LFSS depend on the parameter variations 

iδα , the 2nd-LFSS is computationally expensive to solve. To avoid the need for 
solving the 2nd-LFSS, the indirect-effect term defined in Equation (53) will be 
expressed in terms of a 2nd-Level Adjoint Sensitivity System (2nd-LASS), which 
will be constructed by following the general principles introduced by Cacuci [4] 
[5] [6], comprising the following sequence of steps: 

1) Define a Hilbert space, denoted as ( )2H , having vector-valued elements of 

the form the ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )†2 2 2 2 2 2
1 2 3 4, , ,  ∈ a x a x a x a x a x H , with com-

ponents that are uN -dimensional vectors of the form  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
†2 2 2 2

,1 , ,, , , , , 1,2,3,4
ui i i j i Na a a i  = a x x x x    with square-integrable 

components ( ) ( )2
, , 1,2,3,4; 1, ,i j ua i j N= =x  . The inner-product in ( )2H , de-

noted as ( ) ( ) ( ) ( )
( )

2 2

2
,a x b x , of two vector-valued functions ( ) ( ) ( )2 2∈a x H  

and ( ) ( ) ( )2 2∈b x H , is defined as follows: 

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

( )

4
2 2 2 2

2 1

4
1 1
, ,

1 1 1

, ,

d .
u
ixu

i

k k
j

xNN

j k j k i
j k i x

a b x

ϕ=

= = =

=

∑

∑∑∏ ∫

a x b x a x b x

x x




α

α

       (60) 

In particular, the inner product defined in Equation (60) also holds at the no-
minal parameter values 0α . Using the definition provided in Equation (60), 
construct the inner product of a vector  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1 1

†2 2 2 2 2 2
1, 2, 3, 4,, , ,i i i i i

  ∈ x x x x xψ ψ ψ ψ ψ H  with Equation (57) to 
obtain the following relation: 

( ) ( ) ( ) ( ) ( ) ( )
( ){ }

( )
( ) ( ) ( ) ( )

( ){ }
( )1 10 0

2 2 2 2 2

2 2
, ; , ; .i if f=

g g

x L g u x x S gψ ψ    (61) 

The relation expressed by Equation (60) is continuous in the neighborhood of 
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the nominal values ( ) ( ) ( ) ( )
†1,0 1,00 0 ; ; ; ;f f 

 g e x x ϕ ψ . 
2) Using the definition of the adjoint operator in the Hilbert space ( )2H , the 

left-side of Equation (61) is recast as follows: 

( ) ( ) ( ) ( ) ( ) ( )
( ){ }

( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }

1 0

1
0

1 1 1 1

2 2 2

2

*2 2 2

2

2 1 1 2 2 2 20
1 2 1, 2, 3, 4,

, ;

, ;

; ; ; ; , ; , , ,
x

i

i

i i i i

f

f

P f δ δ δ δ
∂Ω

   =     

 +  

g

g

x L g u x

u x L g ψ x

x x x x

ψ

α ϕ ψ ψ ψ ψ ψ ψ ψ

 (62) 

w h e r e  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 1 1 1

2 1 1 2 2 2 20
1 2 1, 2, 3, 4,; ; ; ; , ; , , ,

x
i i i iP f δ δ δ δ

∂Ω
 
 x x x xα ϕ ψ ψ ψ ψ ψ ψ ψ  

denotes the bilinear concomitant defined on the phase-space boundary  

x∈∂Ωx , and where ( ) *2 
 L  denotes the formal adjoint of the operator ( )2L ,  

having components ( )2 *
jiL  defined as the transposed formal adjoints of the 

components of ( )2L , i.e., 

( ) ( )
( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )
( )

*2 2 *

4 4

2 2
*

2 2

*

; ;

; ;

ji

f f

f f

F f F f

F f F f

×
   
   

 ∂ ∂
− − 

∂ ∂ ∂ ∂ 
 ∂ ∂ − −
 ∂ ∂ ∂ ∂
 
 
  

L L

e e
L p x p x

e e
L p x p x

L
L





0

0

0 0 0
0 0 0

α
ϕ ϕ ϕ ψ

α
ψ ϕ ψ ψ

α
α

    (63) 

3) The first term on the right-side of Equation (62) is now required to 
represent the indirect-effect term defined in Equation (53), which is accom-
plished by requiring that the following relation be satisfied: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )

( )

( )

( )

( )

1
0

1 1 1 1

0

*2 2 2

2

†1 1 1 1

11 1

, ;

, , , , for 1, , ; 1, , .

i

i i i i

f

F F F F
f NF i Nα

       

  ∂ ∂ ∂ ∂  = = = 
∂ ∂ ∂ ∂    

g

g

u x L g x

 

ψ

ϕ ψ ϕ ψ

  (64) 

4) The boundary conditions given in Equations (56) are now implemented in 
Equation (62), thereby reducing by half the number of unknown boun-
dary-values in the bilinear concomitant  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 1 1 1

2 1 1 2 2 2 20
1 2 1, 2, 3, 4,; ; ; ; , ; , , ,

x
i i i iP f δ δ δ δ

∂Ω
 
 x x x xα ϕ ψ ψ ψ ψ ψ ψ ψ . The  

boundary conditions for the functions ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1

2 2 2 2
1, 2, 3, 4,, , ,i i i ix x x xψ ψ ψ ψ  are  

now chosen so as to eliminate the remaining unknown boundary-values of the 
functions δϕ , δψ , ( )1

1δψ  and ( )1
2δψ  in  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 1 1 1

2 1 1 2 2 2 20
1 2 1, 2, 3, 4,; ; ; ; , ; , , ,

x
i i i iP f δ δ δ δ

∂Ω
 
 x x x xα ϕ ψ ψ ψ ψ ψ ψ ψ  while  

https://doi.org/10.4236/ajcm.2020.103018


D. G. Cacuci 
 

 

DOI: 10.4236/ajcm.2020.103018 349 American Journal of Computational Mathematics 
 

ensuring that Equation (64) is well posed. The boundary conditions thus chosen 
for the adjoint functions ( ) ( )1

1 xψ  and ( ) ( )1
2 xψ  can be represented in operator 

form as follows: 
( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1

2 1 1 2 2 2 2
1 2 1, 2, 3, 4,; ; ; ; ; ; ; ; ; , .A xi i i if  = ∈∂Ω B x0α ϕ ψ ψ ψ ψ ψ ψ ψ       (65) 

In most cases, the above choice of boundary conditions for the 1st-level adjoint 

function ( ) ( )1 xψ  will cause the bilinear concomitant  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 1 1 1

2 1 1 2 2 2 20
1 2 1, 2, 3, 4,; ; ; ; , ; , , ,

x
i i i iP f δ δ δ δ

∂Ω
 
 x x x x x x x xα ϕ ψ ψ ψ ψ ψ ψ ψ  

in Equation (62) to vanish. Even when it does not vanish, however, this bilinear 
concomitant will be reduced to a residual quantity, which will be denoted as 

( ) ( )2 0
1 1

ˆ ; ; ; , 1, , ; 1, ,P f i f NF i Nαδ = = α α , and which will contain only known 

values of its arguments. 
5) Replacing the right-side of Equation (61) by the left-side of Equation (62), 

replacing the right-side of Equation (64) in the first term on the right-side of 
Equation (62), and recalling that the boundary conditions in Equations (56) and 
(65) have reduced the bilinear concomitant  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 1 1 1

2 1 1 2 2 2 20
1 2 1, 2, 3, 4,; ; ; ; , ; , , ,

x
i i i iP f δ δ δ δ

∂Ω
 
 x x x xα ϕ ψ ψ ψ ψ ψ ψ ψ  to the 

residual quantity ( ) ( )2 0
1

ˆ ; ; ;P f i δα α , yields the following form for Equation (62): 

( ) ( ) ( ) ( ){ }( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

( )

( )

( )

( ) ( )

01

1 1 1 1

0

2 2

2

†1 1 1 1
2 20

1 1 1

2

, ;

ˆ ; ; ; , , , , .

i

i i i i

f

F F F F
P f i δ

  ∂ ∂ ∂ ∂  = +  
∂ ∂ ∂ ∂    

g

g

ψ x S g

u xα α
ϕ ψ ϕ ψ

 (66) 

6) The second term on the right-side of Equation (66) is actually the indi-
rect-effect term, ( ) ( ){ }1

1
i ind

F fδ , defined in Equation (53), so that Equation (66) 
can be re-written in the following detailed form: 

( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ){ }( )
( ) ( ) ( ) ( ){ }( )
( ) ( ) ( ) ( )( ){ }

( )
( ) ( ) ( ) ( )( ){ }

( )

1

1 0

1 0

1 0

1 0

1

1 2 10
1,

2 1
2,

2 2 1
1 13,

2 2 1
2 2 14,

ˆ ; ; ; , , ;

; , , ;

; , ; ; ; ; ;

; , ; ; ; ; ; , 1, , ; 1, , .

i ind

Fi

Ai

i

fi

F f

P f f

f

f f

f f f N i N

ϕ

ϕ

ϕ

α
ϕ

δ

δ δ

δ

δ

δ

= − +

+

+

+ = =

e

e

e

e

x Q

x Q

x Q

x Q  

α α ψ ψ α α

ψ ψ α α

ψ ϕ ψ ψ α α

ψ ϕ ψ ψ α α

 (67) 

As the right-side of Equation (67) indicates, all unknown values of the varia-
tions ( ) ( ) ( ) ( ) ( ) ( )1 1

1 2, , ,δ δ δ δx x x xϕ ψ ψ ψ  have been eliminated from the expres-
sion of the indirect effect term, ( ) ( ){ }1

1
i ind

F fδ , by having replaced these un-
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known variations by quantities that depend on the functions  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1

2 2 2 2
1, 2, 3, 4,; , ; , ; , ;i i i if f f fx x x xψ ψ ψ ψ .  
The system of equations comprising Equations (64) and (65) will be called the 

2nd-Level Adjoint Sensitivity System (2nd-LASS) for the 2nd-level adjoint func-
tions ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1

2 2 2 2
1, 2, 3, 4,; , ; , ; , ;i i i if f f fx x x xψ ψ ψ ψ , 1, , ff N=  , 1, ,i Nα=  . 

The explicit form of Equation (64) is 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

1 1

1
1

2
2 2*

1, 3,

12
2

4,

;
; ;

;;
; ,

fi i

i
f i

F f
f f

F fF f
f

 ∂
−  

∂ ∂  

∂ ∂
− = 

∂ ∂ ∂  

e
L x p x x

xe
p x x

α ψ ψ
ϕ ϕ

ψ
ϕ ψ ϕ

         (68) 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

1 1

1
1

2
2 2

2, 3,

12
2

3,

;
; ;

;;
; ,

fi i

i
f i

F f
f f

F fF f
f

 ∂
−  

∂ ∂  

∂ ∂
− = 

∂ ∂ ∂  

e
L x p x x

xe
p x x

α ψ ψ
ψ ϕ

ψ
ψ ψ ψ

         (69) 

( ) ( ) ( )
( ) ( )

( )
1

1

1
2

3, 1

;
; i

i

F f
f

∂
=

∂

x
L xα ψ

ϕ
                 (70) 

( ) ( ) ( )
( ) ( )

( )
1

1

1
2*

4, 1

;
; i

i

F f
f

∂
=

∂

x
L xα ψ

ψ
                (71) 

It is important to note that the 2nd-LASS is independent of the variations δα  
in the model and boundary parameters. The 2nd-level adjoint functions 

( ) ( )
1

2
2, ;i f xψ  and ( ) ( )

1

2
3, ;i f xψ  are the solutions of equations involving the for-

ward operator ( )L α , while the 2nd-level adjoint functions ( ) ( )
1

2
1, ;i f xψ  and 

( ) ( )
1

2
4, ;i f xψ  are the solutions of equations involving the adjoint operator 

( )*L α . Thus, the 2nd-LASS is solved successively by using two “forward” and 
two “adjoint” computations, for each of the imprecisely known scalar model pa-
rameters. The operator equations underlying the 1st-LASS are to be solved using 
the nominal values 0e  of the model’s parameters and state functions. By con-
tinuity, however, Equations (68)-(71) are valid not only at the nominal parame-
ter values 0α , but also within a neighborhood α  of 0α . 

Replacing the expression obtained in Equation (67) for the indirect-effect 

term ( ) ( ){ }1

1
i ind

F fδ  together with the expression in Equation (52) for the di-

rect-effect term ( ) ( ){ }1

1
i dir

F fδ  into Equation (51) yields the following expres-

sion for the total 2nd-order response sensitivity ( ) ( )1

1 0; ;iF fδ δg g : 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

1 2 1 1 1 1
2

1
1

2 1 1 2 2 2 2
1 2 1, 2, 3, 4,

1

for 1, , ; 1, , : ; ;

; ; ; ; ; , , , ; ,

i

N

ji i i i i i
i

f NF i N F f

F f
α

α δ δ

δα
=

= =

 
 ∑

g g

x x x x

 

 ϕ ψ ψ ψ ψ ψ ψ ψ α
  (72) 

where 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 21 2 1 1 1 1

2 1 1 2 2 2 2 2
1 2 1, 2, 3, 4,; ; ; ; ; , , , ; i ii i i i i iF f F α α  ≡ ∂ ∂ ∂ x x x xϕ ψ ψ ψ ψ ψ ψ ψ α ,  
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1 2, 1, , ; 1, , fi i N f Nα= =  , denotes the 2nd-order partial sensitivity of the re-
sponse to the model parameters and is given by the following expression: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

1 21 2 1 1 1 1

1 1
2 2

1
2 2

1
2

2 1 1 2 2 2 2 2
1 2 1, 2, 3, 4,

*
2 2

1, 2,

1*2
12

3,

12
22

4,

; ; ; ; ; , , , ;

, ,

;
,

;
,

i ii i i i i i

AF
i i

i i

fi
i i

fi
i

F f F

F f

F f

ϕ ϕ

ϕ

α α

α α

α α

α

  ≡ ∂ ∂ ∂ 

 ∂ − ∂ −   = +
∂ ∂

 ∂∂  + −
∂ ∂ ∂

 ∂∂  + −
∂ ∂

x x x x

Q LQ L φ
x x

L xe
x p x

L xe
x p x

ϕ ψ ψ ψ ψ ψ ψ ψ α

α α ψα α
ψ ψ

α ψ
ψ

ϕ

α ψ
ψ

ψ

( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2

1 1 1 1

2

1 1 1
1 2

2 1 1 2 2 2 2
1 2 1, 2, 3, 4,

1 2

; ; ; ;

ˆ ; ; ; ; , , , ;
, 1, , ; , 1, , .

i

i i

i i i i

i

R

P
f NF i i N

ϕ

α

α α

α

∂
+

∂ ∂

 ∂  − = =
∂

x x x x
 

ϕ ψ ψ ψ α

ϕ ψ ψ ψ ψ ψ ψ ψ α

 (73) 

All quantities appearing in Equation (73) are to be computed at the nominal 
values for the model and boundary parameters, although this requirement has 
not been indicated explicitly in Equation (73) in order to simplify the notations. 
In particular, contributions to the 2nd-order response sensitivities involving 
boundary parameters will arise not only from the last two terms in Equation 
(73), i.e., from the residual term on the domain’s boundary and from the di-
rect-effect term, but may also arise from other terms involving mixed 
second-order derivatives with respect to the imprecisely known boundary para-
meters. 

Since the 2nd-LASS is independent of parameter variations δα , each of the 
G-differentials ( )

1

1
iFδ  contains one complete row (running on the index 

2 1, ,i Nα=  ) of the mixed second-order partial sensitivities, 
1 2

2
i iF α α∂ ∂ ∂ , 

which can be computed exactly and efficiently after solving only once the 
2nd-Level Adjoint Sensitivity System (2nd-LASS) to obtain the 2nd-level adjoint 
functions ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1

2 2 2 2
1, 2, 3, 4,; , ; , ; , ;i i i if f f fx x x xψ ψ ψ ψ , for each index  

1 1, ,i Nα=   and index 1, ,f NF=  . Thus, for each index 1, ,f NF=  , the 
exact computation of all of the partial second-order sensitivities, 

1 2

2
i iF α α∂ ∂ ∂  

1 2, 1, ,i i Nα=   requires at most Nα  large-scale (adjoint) computations using 
the 2nd-LASS, rather than ( )2 2 3 2N Nα α+  large-scale computations as would 
be required by re-computations and/or forward methods. It is also important to 
note that by solving the 2nd-LASS Nα -times, the “off-diagonal” 2nd-order mixed 
sensitivities 

1 2

2
i iF α α∂ ∂ ∂ , 1 2i i≠ , will be computed twice, in two different ways 

(i.e., using distinct 2nd-level adjoint functions), thereby providing an indepen-
dent intrinsic (numerical) verification that the respective sensitivities are com-
puted accurately. 

Another important characteristic of using the 2nd-LASS is the flexibility it pro-
vides for prioritizing the computation of the 2nd-order sensitivities. The 
2nd-order mixed G-derivatives (sensitivities) corresponding to the largest relative 
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1st-order response sensitivity should be computed first; the second largest rela-
tive 1st-order response sensitivity should be considered next, and so on. Compu-
ting 2nd-order partial sensitivities that correspond to vanishing 1st-order sensitiv-
ities may also be of interest, since vanishing 1st-order sensitivities may indicate 
critical points of the response in the phase-space of model parameters. Thus, 
only the 2nd-order partial sensitivities which are deemed important should be 
computed; the unimportant ones can be deliberately neglected while knowing 
the error incurred by neglecting them. 

It is noteworthy that the solving the equations underlying the 1st-LASS and 
2nd-LASS require computational solvers for solving (i.e., “inverting”) either the 
forward linear operator ( )L α  or the adjoint linear operator ( )*L α . Only the 
various source on the right-sides of the 1st-LASS and 2nd-LASS differ from one 
another. Therefore, the same computer program and “solvers” can be used for 
solving the 1st-LASS and the 2nd-LASS as were already used for solving the origi-
nal system of equations. For this reason, the 2nd-LASS was designated as a 
“second-level” rather than a “second-order” adjoint sensitivity system, since the 
2nd-LASS does not involve any explicit 2nd-order G-derivatives of the operators 
underlying the original system, but involves the inversion of the same operators 
that are needed to be inverted for solving the 1st-LASS and the original system of 
equations. 

4. Conclusions 

This work has presented the “Second-Order Comprehensive Adjoint Sensitivity 
Analysis Methodology (2nd-CASAM)” for the efficient and exact computation of 
1st- and 2nd-order response sensitivities to imprecisely known parameters and 
domain boundary for a generic/general model for linear physical systems. The 
model’s response (i.e., model result of interest) is considered to be a generic 
function/operator that depends on the model’s forward and adjoint state func-
tions, as well as on the imprecisely known boundary and model parameters. It 
has been shown that the novel 2nd-CASAM has the following features that gene-
ralize and extend all previously published works on this topic: 

1) The system response considered within the 2nd-CASAM framework is an 
operator-valued response that depends on both the forward and adjoint 
state-functions. Functional-valued responses are subsumed as particular cases. 

2) The 2nd-CASAM framework enables the efficient and exact computation of 
the 1st- and 2nd-order response sensitivities not only to uncertain model para-
meters but also to uncertain domain boundaries of generic linear systems. In 
particular, contributions to the first-order response sensitivities with respect to 
the specific parameters that characterize the imprecisely known model’s domain 
boundary can arise solely from boundary terms or directly from the response if 
its definition includes the domain’s boundary. On the other hand, mixed 
second-order response sensitivities involving boundary parameters may arise 
from all source terms (of the 2nd-LASS) that involve the imprecisely known 
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boundary parameters. 
Companion works [18] [19] present illustrative applications of the 2nd-CASAM 

to various responses for a paradigm model of generic particle/radiation transmis-
sion and/or evolution which has fundamental applications in many fields, in-
cluding nuclear engineering (e.g., radiation detection, chemical reprocessing of 
spent reactor fuel, radioactive decay, etc.). 
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