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Abstract
Resource allocation problems are often approached with linear programming techniques. But
many concrete allocation problems in the experimental and observational sciences cannot or
should not be expressed in the form of linear objective functions. Even if the objective is linear, its
parameters may not be known beforehand because they depend on the results of the experiment
for which the allocation is to be determined. To address these challenges, we present a bipartite
graph neural network (GNN) architecture for trainable resource allocation strategies. Items of
value and constraints form the two sets of graph nodes, which are connected by edges
corresponding to possible allocations. The GNN is trained on simulations or past problem
occurrences to maximize any user-supplied, scientifically motivated objective function, augmented
by an infeasibility penalty. The amount of feasibility violation can be tuned in relation to any
available slack in the system. We apply this method to optimize the astronomical target selection
strategy for the highly multiplexed Subaru Prime Focus Spectrograph instrument, where it shows
superior results to direct gradient descent optimization and extends the capabilities of the currently
employed solver which uses linear objective functions. The development of this method enables
fast adjustment and deployment of allocation strategies, statistical analyses of allocation patterns,
and fully differentiable, science-driven solutions for resource allocation problems.

1. Introduction

Resource allocation deals with the distribution of a fixed amount of resources through a number of
admissible actions so as to minimize the incurred cost or maximize the resulting utility. The problem is
encountered in a variety of application areas, including load distribution, production planning, computer
resource allocation, queuing control, portfolio selection, and apportionment (Katoh and Ibaraki 1998). We
are particularly interested in allocation problems arising in astronomical research, where the resource to be
allocated is observing time at specific telescopes that are expensive to operate, and the utility is given by the
scientific information gained from the chosen set of observations. With improved resource allocation
strategies, astronomers can expect larger scientific yields or lower operational costs. The challenge lies in the
large number of celestial objects that could in principle be observed and the large number of instrumental
configurations that could be chosen.

Powerful optimization packages for constrained and mixed-integer optimization like GUROBI can be
employed to solve allocation problems, e.g. as a minimum-cost maximum flow-problem (Bertsekas 1998).
But this approach has several limitations. First, the fastest algorithms require a linear programming (LP)
formulation, i.e. one in which the objective function and the constraints are linear in the allocations:
f(x) = c⊤x, subject to Ax⩽ b. Although many problems can be expressed as LP, it does not permit cases in
which different allocations interact or interfere with each other. We will show that such cases can easily arise
in practice. Second, the minimizers of the respective objective functions are themselves not differentiable
with respect to the parameters of the problem such as per-item costs c. This precludes such an approach in
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situations where the actual cost structure is not known a priori, as is often the case in scientific settings. This
limitation can be overcome by treating the non-differentiable solver as a component in an extended
gradient-based optimization (Amos and Kolter 2017, Agrawal et al 2019, Vlastelica et al 2020, Donti et al
2021), at the expense of additional hyper-parameters and the cost of running the solver inside of the
optimization loop. Third, increasingly accurate analyses in astronomy and cosmology demand very detailed
modeling of the processes that define the set of ultimately observed celestial objects (Rix et al 2021). It has
thus become commonplace to perform hundreds or thousands of simulations to determine the actual
‘selection function’ of the observing program, e.g. Ross et al (2017), Mints and Hekker (2019)and Everett
et al (2020). Complex mixed integer problem (MIP) solvers, run either directly or as component of a deep
learning architecture, would constitute a computational bottleneck for these efforts.

1.1. Contributions and related work
Unlike traditional MIP solvers, or their neural reformulation (Nair et al 2020), we seek to find allocations
even if the parameters of the problem are not fully determined. In addition, we want to do so for a specified
type of allocation problem in general rather than running an explicit solver for every instance of the problem,
as proposed in e.g. Vlastelica et al (2020). We thus want to find solution strategies for allocation problems
with a differentiable, trainable model, whose solutions are competitive with direct MIP solvers. The expected
performance gains are important for statistical assessments of the probability of particular allocations.

In this work we present a graph neural network (GNN) solver for general resource allocation problems.
The objective function can take an arbitrary form, which generalizes works that are restricted to linear or
convex functions, e.g. Gao et al (2020) and Lima et al (2020). The underlying bipartite graph comprises sets
of items and constraints as nodes, connected by edges representing possible allocations. The GNN is trained
on simulations or past problem instances to learn how to take actions, i.e. to assign allocations, that satisfy all
constraints within the posed resource limits, while maximizing a user-supplied utility function. In contrast
to reinforcement learning, we do not assign immediate rewards for specific actions. We also do not solve the
assignment or scheduling problem, i.e. to determine a specific feasible sequence of assignments to maximize
a given objective in a multi-epoch observing program. Instead, the GNN predicts the amount of resources to
allocate for every object such that there is at least one feasible sequence. We have recently demonstrated that
GNNs with such a continuous relaxation solve allocation problems with linear constraints better than strong
human heuristics or parameterized evolutionary strategies even if the utility function can only be learned by
interacting with the environment (Cranmer et al 2021). What we show here is that bipartite GNNs can
efficiently learn to obey feasibility constraints of complex real-world environments with discrete allocations.

The remainder of this paper is structured as follows: In section 2 we describe the problem definition and
our GNN solver in detail. In section 3 we specialize this method to two concrete examples of selecting the
optimal set of galaxies to observe with the upcoming Prime Focus Spectrograph, a highly multiplexed
instrument on the Subaru Telescope, located on Maunakea in Hawai‘i, USA. In section 4 we discuss training
and initialization, and in section 5 we compare the results of our GNN to those of direct gradient descent and
the currently established baseline from a LP solver. We conclude in section 6 with a summary and an outlook
of possible extensions of our approach.

2. Methodology

2.1. Problem definition
Following Katoh and Ibaraki (1998) and Bretthauer and Shetty (1995), the general resource allocation
problem has the form of a (non-)LP problem, where we seek to:

maximize f(x1, . . . ,xJ) subject to
hk(x1, . . . ,xJ)⩽ 0 k ∈ {1, . . . ,Kineq}
hk(x1, . . . ,xJ) = 0 k ∈ {Kineq + 1, . . . ,Kineq +Keq}.

(1)

The objective function f depends on allocations xj ( j ∈ {1, . . . , J}) that can be either discrete,
xj ∈ {0,1,2, . . . ,Tmax}, or continuous, xj ∈ [0,Tmax], up to for some finite Tmax. Constraint equations
hk (k ∈ {1, . . . ,K= Kineq +Keq}) limit the configurations under which these allocation can be distributed.
Depending on the features of the objective function and the types of constraints, resource allocation
problems form different classes. Cases where the objective function or constraints are linear or convex have
known solutions (e.g. Federgruen and Groenevelt 1986, Bretthauer and Shetty 1995, Katoh and Ibaraki 1998,
Shi et al 2015). But resource allocation problems remain conceptually challenging when the objective
function or constraints have more complicated forms, and numerically demanding when allocations are
discrete and when the number of variables is large.
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We find it beneficial to reparameterize the objective function, i.e. we seek to:

maximize f(y1 . . . ,yI) subject to
yi = gi(x1, . . . ,xJ) i ∈ {1, . . . , I}
hk(x1, . . . ,xJ)⩽ 0 k ∈ {1, . . . ,Kineq}
hk(x1, . . . ,xJ) = 0 k ∈ {Kineq + 1, . . . ,Kineq +Keq},

(2)

by means of functions gi (i= 1, . . . , I). The motivation behind the reparameterization lies in symmetries of
the objective function which often permit a strong compression from the full set of J allocations to a much
smaller number of variables yi. In particular, if the objective function only depends on the total allocation
(e.g. in the single knapsack problem), a single y1 =

∑J
j=1 xj suffices for any J. For resource allocation

problems, the set of y’s correspond to the items of value for which the allocations are made.
Equations (1) and (2) can represent many types of optimization problems. What makes resource

allocation problems special is that their h and g functions are permutation invariant, i.e. there exists

functions ρ and ϕ such that e.g. h(x1, . . . ,xJ) = ρ
(∑

jϕ(xj)
)
(Zaheer et al 2017). Consequently, constraint

and the item functions do not depend on the order of arguments.

2.2. Graph construction
According to equation (2), the set of allocations x1, . . . ,xJ provides the arguments to both the g and the h
functions. This dependency structure suggest a representation of the allocation problem in the form of a
bipartite graph, where one set of nodes represent the constraints hk (k= 1, . . . ,K) and the other represents
the items gi (i= 1, . . . , I). Whenever a particular xj appears as argument of the nodes g i and hk, the graph has
an edge connecting these two node. The set of allocations xj ( j= 1, . . . , J) thus defines the connectivity of the
graph, with any individual xj potentially being represented by multiple edges. Because of the suitable
representation, bipartite graphs have a long history in assignment and allocation problems (Bertsekas 1998,
Wong and Saad 2007, Abanto-Leon et al 2017, Nair et al 2020).

Of particular relevance for this work is that the constraints and items form two classes of similar,
permutation invariant functions, as we demonstrate with the following example.

2.3. Example: multiple knapsack problem
We demonstrate the ansatz above for the 0–1 Multiple Knapsack Problem (MKP). Given a set of I items and a
set of K knapsacks, with vi and wi being the value and weight of item i, and ck the capacity of knapsack k, the
task is to select K disjoint subsets of items such that they maximize the total value. Each subset is assigned to
a different knapsack, whose capacity cannot be less than the total weight of items in the subset, i.e. we seek:

argmax{x11,...,xIK}

K∑
k=1

I∑
i=1

vixik

∀k :
I∑

i=1

wixik − ck ⩽ 0

∀i :
K∑

k=1

xik − 1⩽ 0

∀k, i : xik ∈ {0,1}. (3)

Although there are I×K allocation variables, the objective function actually only depends on I independent
combinations of them:

∑K
k=1

∑I
i=1 vixik =

∑I
i=1 viyi, where yi =

∑K
k=1 xik. We can effectively combine the

per-item constraints with the definition of the yi by defining itemization functions gi(x) =min(
∑K

k=1 xik,1).
The MKP can be simplified and written in the form of equation (2):

argmax{x11,...,xIK}

I∑
i=1

viyi

∀i : yi = gi(x) =min

(
K∑

k=1

xik,1

)

∀k : hk =
I∑

i=1

wixik − ck ⩽ 0

xik ∈ {0,1}. (4)

3
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The maximizers of equation (4) are equivalent to those of equation (3) with respect to the objective function.
The latter formulation permits unfeasible assignments of a single item to multiple knapsacks, which can be
corrected by a single pass over all items and removal of all but one assigned knapsack.

From this formulation, we construct a graph as follows: Each g i is one item node, and each hk is one
constraint node. The edges xik connect both sets of nodes and form a complete bipartite graph. Because the
MKP has one constraint equation per knapsack, h-nodes represent the knapsacks and the g-nodes the items.
It is evident that the underlying functions are structurally similar and permutation invariant.

This construction is similar to the graph representation of a MIP in Nair et al (2020), but not identical.
They restrict their problem to objectives of the form

∑
j cjxj and directly identify the item nodes with xj, we

allow for arbitrary permutation invariant functions g to modify the relation between xj and yi in
equation (2). Also, in the graph the edges correspond to the elements aij of the matrix in the linear constraint
equation Ax⩽ b, i.e. the carry information about feasibility, whereas the edges in our graph carry
information about the allocation amount.

2.4. GNN definition
Unlike traditional MIP solvers, or their neural reformulation (Nair et al 2020), we seek to find solutions
where the parameters of the problem are not fully determined. For the MKP that can arise e.g. when item
values are not known a priori. In addition, we seek an architecture that learns to solve a particular kind of
allocation problem rather than running an explicit solver for every instance of the problem as proposed in
e.g. Vlastelica et al (2020). The expected performance gains are important for statistical assessments of the
probability of particular allocations. We thus want to describe allocation problems with a differentiable,
trainable model.

The h and g functions in allocation problems form two classes of similar functions, which means that we
need to parameterize only the behavior of the classes, not of every class element. This allows us to model
relations on the graph with a bipartite version of the GNN blocks defined in Battaglia et al (2018).
Specifically, the bipartite GNN block has two distinct node models, instead of only one for the regular GNN
block. Both node models depend on their attached edges and corresponding nodes, and the edge model
depends on both sets of attached nodes, whose features we simply concatenate3.

In addition to the graph connectivity, each of the three types of models needs to access auxiliary features,
such as the item weights in the MKP, so we make sure that each element in the graph has direct access to all
information related to its role in the optimization problem (see section 4 for concrete examples). We
hypothesize that the competing demands on available resources can better be met when each node model has
access not only to the edge features, but also to the node features on the opposite side of the edge. We
therefore concatenate them into an extended edge feature set, expecting that this renders message passing
more efficient and thus reduces the number of GNN blocks. Formally, let nx,nh,ng,nu be the number of
features carried by each edge, constraint node, item node, and global node, respectively. Also, let nag and nah be
the number of different aggregators of the item and constraint models to summarize the information carried
by the (extended) edge features. We normally use four aggregators, namely the element-wise mean, variance,
skewness, and kurtosis of the edge features, unless the number of edges is too small to define some of the
high-order moments. Defining ϕ : R(·) → R(·) as a multi-layer perceptron (MLP), our GNN block is thus
comprised of {ϕx,ϕh,ϕg,ϕu}, where:

• ϕx : R(nx+nh+ng+nu) → Rnx updates the edge features using the previous edge features, features from the two
nodes connected to the edge, and global features;

• ϕh : R(nh+nah(nx+ng)+1+nu) → Rnh updates the constraint node features using the previous constraint node
features, nah = 4 aggregators (element-wise mean, variance, skewness, and kurtosis) of the extended edge
features, the number of connected edges, and the global features;

• ϕg : R(ng+nag(nx+nh)+nu) → Rng updates the item node features using the previous item node features, the
aggregated edge features, and the global features;

• ϕu : R(nh+ng+nu) → Rnu updates the global features using the mean of the node features and the previous
global features.

The update sequence is built in a similar way as the MetaLayer class in the PyGeometric package (Fey
and Lenssen 2019). In particular, we place another MLP before the aggregation step, which renders the
models more flexible, and is the reason why we can handle permutation invariant functions by ϕh and ϕg

instead of merely symmetric functions (Zaheer et al 2017). The updates proceed in the order of figure 1: first

3 Generalizations to tripartite or even more complex graphs are conceivable to address problems in which the constraint and item func-
tions cannot be represented by only two classes.
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Figure 1. Updates in a GNN block. Blue shows the element that is being updated, black indicates the elements that are involved in
the update and grey elements are unused. h and g represent the attributes of the two types of nodes in the bipartite graph, x
represents the edge attributes, and u is the global attributes of the graph. Parameters with primes are the updated values.

the edge model given the node features, then both node models given the respective edge features, and then a
global model given the node features.

We stack 4 GNN blocks and perform batch normalization on all nodes and edge features, where the batch
dimension is given by the number of nodes or edges of the graph. The number of GNN blocks depends on
the complexity of the problem, with more blocks corresponding to more message-passing steps to negotiate
between the competing demands on the minimizer of equation (6). Like Cranmer et al (2021) we find that 3
or 4 blocks suffice, and we leave determining the optimal number of blocks to forthcoming work.

The output of ϕx of the last GNN block is a real number x̃j and the corresponding xj is calculated by
xj = Tmax ×σ(x̃j). If the problem requires integer allocations, we apply a round function to the output.
During training, we replace the round function with the noisy sigmoid function (Edward 1994):

z∼ U(−l/2, l/2)

x ′ = x+ z

f(x) = floor(x ′)+σ

[
k

(
x ′ − 1

2
− floor(x ′)

)]
, (5)

5
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Figure 2. Comparison between noisy sigmoid function and round function. Black curve is the exact sigmoid function and the
shadow shows the noise. Blue curve is the exact round function. In this figure, the sharpness is 20 and the noise level is 0.3.

where k is the sharpness and l is the noise level (see figure 2).

2.5. Loss function
We define the loss function as the negative Lagrangian of equation (2):

L(x1, . . . ,xJ) =−f(y1, . . . ,yI)+λ
K∑

k=1

pk [hk(x1, . . . ,xJ)] , (6)

where yi = gi(x1, . . .xJ) and pk are penalty functions appropriate for constraint violations, e.g. ℓ1, ℓ2 or ReLU.
The amount of penalty λ> 0 formally needs to be infinite if only feasible minimizers of equation (2) are

accepted. We relax this requirement by increasing the penalty to a large number during network training.
Empirically, we find that this often leads to feasible solutions, or an amount of constraint violation that can
tolerated due to slack in realistic settings. If solutions with exact feasibility are needed, one can make minor
adjustments with a greedy algorithm, e.g. by removing the least valuable items in the case of overallocation.

3. Application to the Prime Focus Spectrograph (PFS) target selection problem

The PFS is a wide-field, highly multiplexed optical and near-infrared spectrograph that will soon be installed
at the 8.2 m Subaru Telescope located at the peak of Maunakea in Hawai‘i, USA (Tamura et al 2016). The
instrument is equipped with 2394 movable fibers distributed over a 1.3 deg2 field of view. The fibers can be
moved laterally so that they can collect the light from astronomical objects they are pointed at. They stay in
place for a configurable amount of time to feed light to the dispersive elements of the spectrograph, and
ultimately to its detector, forming one ‘exposure’. Between exposures, every fiber can independently be
positioned within a circle of 9.5 mm in diameter by an electro-mechanical actuator. The whole fiber
assembly is packed in a hexagonal pattern with 8 mm separation (see figure 3). The overlap between adjacent
‘patrol regions‘ enables full sky coverage4.

3.1. The target selection problem
Given a total time allocation budget T and list of astronomical ‘targets’ with their celestial positions and
other characterizing features, a target selection strategy has to decide which targets to observe and, possibly
for every single one, for how long. Cranmer et al (2021) demonstrated that GNNs can solve this allocation
problem, even with an implicit objective function, better than heuristics or simple parameterized strategies,
but in their approach the allowed allocations xj ∈ [0,Tmax] were independent from each other, the only
requirement being that

∑
j xj ⩽ T.

4 Because each galaxy can be reached by at most two fibers, we limit the aggregator in the item MLP ϕg to a simple element-wise sum,
i.e. nag = 1. Using mean and variance does not yield any benefits, and higher-order moments would be ill-defined.
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Figure 3. The fiber layout of the Prime Focus Spectrograph in focal-plane coordinates. Circles indicate the patrol region for all
2394 fibers.

For a multiplexed instrument such as the PFS the solutions are much more strongly constrained because
the allocations for all 2394 fibers in any given exposure must be identical. The allocations of different targets
may differ by observing some targets more often than others. For the planned PFS galaxy evolution program
of this case study, each exposure time is fixed at 1 h, with a total observing time budget, i.e. the sum of all
exposure times, of T= 42 h.

Specifically, let I be the number of targets in a single field of view of the telescope. The objective function
f measures the scientific utility as a function of the time spent on each target, i.e. f(τ1, τ2, . . . , τI). It is related
to the properties of the selected galaxies and the specific astrophysical questions at hand. In contrast to
Cranmer et al (2021), we demand for this work that f is a known function. But unlike Lupton et al (2002)
and Blanton et al (2003), where f is restricted to specific linear functions, we allow it to be an arbitrary
permutation-invariant function. Let Φi (1⩽ i⩽ I) be the set of fibers that can reach the position of galaxy i,
and letΨk (1⩽ k⩽ 2394) be the set of galaxies that fiber k can reach. The total time spent on this field is T.
The target selection problem is then defined as the following optimization problem:

argmax
tik

f(τ1, τ2, . . . , τI)

∀i : τi =min

∑
k∈Φi

tik,Tmax


∀k :

∑
i∈Ψk

tik ⩽ T

∀i,k : tik ∈ {0,1,2, . . . ,Tmax}, (7)

where tik is the time fiber k spends on galaxy i, and we redefined all times in integer multiples of the base
exposure time of 1 h. The maximum time Tmax ⩽ T any single galaxy can receive is set by the scientific
program. Compared to the general form of resource allocation problem in equation (2), we see that τ ’s and
t’s correspond to y’s and x’s, respectively.

In principle, we must make sure that any fiber only observes at most one galaxy and any galaxy is
observed by at most one fiber at each exposure:

7
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T∑
l=1

tikl = tik∑
i∈Ψk

tikl ⩽ 1

∑
k∈Φi

tikl ⩽ 1

tikl ∈ {0,1}, (8)

where tikl is the time spent on target i from fiber k in exposure l. However, we prove in appendix A that
finding a sequence of exposure-level assignments is always possible as long as no explicitly
sequence-dependent term appears in objective or constraint functions, and can be found in at most
polynomial time5. Thus, we can focus on the optimization problem in equation (7) without having to worry
about the sequence decomposition.

The utility function can in some cases be written as the sum of the individual utilities of each galaxy, i.e.
f(τ1, τ2, . . . , τI) =

∑
i fi(τi), which leads to a nonlinear MKP that is already outside of the scope of LP solvers.

However, the total scientific yield generally depends on the collective properties of all observed galaxies. For
example, a scientific study may require that at least a certain number of galaxies be observed such that a
combined measurement reaches a desired significance. The utility function is thus the sum of a separable
part and a non-separable part,

f(τ1, τ2, . . . , τI) =
∑
i

fi(τi)+ s(τ1, τ2, . . . , τI). (9)

We will define the specific form of f for two cases below. The final loss function is then a specialization of
equation (6) for the problem in equation (7):

L(t11, . . . , tIK) =−f(τ1, τ2, . . . , τI)+λ
2394∑
k=1

p

∑
i∈Ψk

tik −T

 . (10)

3.2. Case 1: predefined galaxy classes
The galaxy evolution program in the PFS Subaru Strategic Program (SSP) survey Takada et al (2014)
currently plans to target a variety of galaxies, and has tentatively identified 12 distinct science cases and
defined selection criteria for each of them. The sets of galaxies that satisfies these criteria define 12 galaxy
classes. Each of the science cases also defines the number of exposures a galaxy in the respective class should
receive. Table 1 shows the 12 galaxy classes and the number of galaxies satisfying the selection criteria in a
reference field. The total number of visits available is T= 42, while the time spent on a single galaxy is
limited to Tmax = 15.

A general goal in designing the criteria and costs cm of table 1 is that the program observes as many
galaxies as possible for every science case, ideally in a reasonably equitable distribution. We formalize this by
means of an objective function that maximizes the minimal per-class completeness over all 12 classes:

f(τ1, . . . , τI) =min

(
n1
N1

,
n2
N2

, . . . ,
n12
N12

)
with nm ≡

∑
i∈Θm

σ

(
τi + 0.5−Tm

0.2

)
, (11)

whereΘm is themth class, Tm is its proposed per-galaxy exposure time, and Nm is the number of galaxies in
the field falling into classΘm. We denote nm as the number of fully observed galaxies in classm. During
training we use a sigmoid function, as indicated above, to smoothly approximate the step function, but at test
time we replace it with the actual step function to count distinct allocations. We chose as penalty function p a
squared ReLU function, i.e. an inequality constraint on the fiber allocation capacity, because there is no need
to exhaust all resources if no gain in f is achieved.

Equation (11) is evidently non-linear and entirely non-separable as it seeks to balance the allocation
across 12 classes, each of which is comprised of thousands of galaxies, for which multi-exposure allocations
need to be determined. The exact form of the equation could be chosen differently, but the underlying idea is
motivated by the current survey design principle for the PFS galaxy evolution program.

5 If the relation between fibers and galaxies changes with time due to effects like dithering, i.e. Φi and Ψk are time-dependent, we split
one constraint into multiples to make sure each constraint is time-invariant and can be related to one fixed constraint node in the graph.
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Table 1. Predefined galaxy classes for case 1. The required exposure times Tm have been determined by the PFS galaxy evolution
program on the basis of expected performance of the instrument, and the costs cm provide the current baseline, which has been found
by manual exploration. Nm denotes the number of galaxies that satisfy the class selection criteria in a reference field.

1 2 3 4 5 6

Tm (h) 2 2 2 12 6 6
cm 19 683 19 683 59 049 531 441 177 147 177 147
Nm (103) 68.2 69.3 96.3 14.4 22.0 8.3

7 8 9 10 11 12

Tm (h) 12 6 3 6 12 1–15a

cm 531 441 177 147 59 049 177 147 531 441 59 049
Nm (103) 14.0 22.0 7.4 4.5 2.8 9.7
a Each galaxy in this class has an independent exposure time requirement.

3.3. Case 2: a general objective function
For case 2, we envision a smaller observing program that could be carried out with PFS in a single night. We
thus adopt a very modest allocation of T= 6 h and Tmax = 4 h. Instead of adopting predefined classes, we
now combine two objectives: (1) maximizing the number of galaxies, for which spectroscopic redshifts z can
be determined with a precision δz< 0.001. Such a sample of galaxies can be used to reconstruct the so-called
cosmic web, e.g. Jasche et al (2015) and Horowitz et al (2021). (2) creating a sample of at least 5000 faint
galaxies at relatively large redshift z > 1 and within a range masses, 11.8< log10Mhalo < 12.5, that should be
observed at least once. The purpose of such a sample is to aggregate their spectra and achieve high
signal-to-noise ratio to test for the presence of specific spectral features, e.g. Carnall et al (2019) and
Salvador-Rusiñol et al (2019). While the specific definitions of these objectives are hypothetical, they serve as
an example of a directly science-driven fiber allocation strategy for PFS.

The objective function thus contains two parts. The separable part of objective 1 is the per-galaxy success
rate of redshift measurements. The success rate, a number between 0 and 1, is calculated by fitting the
simulated noisy spectrum of the galaxy, and inferring of a redshift can be estimated from the spectrum with
the desired precision. We use the same galaxy simulation as in Cranmer et al (2021), which employs a single
spectral type for every galaxy, so that the redshift success is a function of redshift, mass, and exposure time
only. We calculate the success rate SRi(t) of galaxy i after t= 1, . . . ,4 exposures, and then linearly interpolate
them:

fi(τi) =


τiSRi(1), 0⩽ τi ⩽ 1
(τi − 1)(SRi(2)− SRi(1))+ SRi(1), 1⩽ τi ⩽ 2
(τi − 2)(SRi(3)− SRi(2))+ SRi(2), 2⩽ τi ⩽ 3
(τi − 3)(SRi(4)− SRi(3))+ SRi(3), 3⩽ τi ⩽ 4

, (12)

The non-separable part for objective 2 amounts to counting the number of galaxies that satisfy the
specified redshift and mass requirements and that are observed by at least one exposure. LetΘ be the set of
all such galaxies. We adopt the following continuous approximation:

s(τ1, . . . , τI) = 10000σ

(
n− 5000

100

)
with n≡

∑
i∈Θ

σ

(
τi − 0.5

0.2

)
, (13)

i.e. n denotes the number of observed galaxies satisfying the selection requirements. This objective term
prefers n> 5000 and is saturated at n≈ 5500. The prefactor 10 000 is a large number compared to

∑
i fi,

chosen to ensure that the second objective receives preference over the first. This choice needs to be made for
any multi-objective optimization. The sharpness of the sigmoid functions, 0.2 and 100 in equation (13), are
two hyperparameters. Larger sharpness leads to a better approximation to the step function, but is also more
difficult to optimize. One could start with small sharpness parameters and then gradually increase them
during the training, but we achieve good results with fixed parameters after a hyperparameter search.

We chose the ℓ2 penalty function for case 2 to reduce over- and under-allocation. In contrast to case 1,
the time allocation is strongly limited and insufficient to saturate both objectives for the large number of
available galaxies. We expect that the under-allocation penalty will become largely obsolete at the end of
training but that it provides more meaningful gradient directions during training.
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Table 2. Training parameters. LR is the learning rate, λ is the penalty factor and l is the noise level.

Pre-training Training

LR λ l LR λstart λend l

Case 1 5× 10−4 1× 10−7 0.3 5× 10−4 1× 10−7 1× 10−4 0.3
Case 2 1× 10−3 0.1 0.3 1× 10−3 0.1 1.0 0.3

4. Feature sets and training

Of particular importance are the feature set for the items, which in our cases correspond to one galaxy per
node. We thus need to provide to the initial item nodes all features that meaningfully describe the
optimization problem from the perspective of the galaxies.

In Case 1, the feature set comprises Tm, an one-hot version of the class index from table 1, and an extra
random number, which distinguishes between different galaxies in the same class. All other nodes, edges and
global features of the graph are initialized with zeros. In Case 2, the item node features are initialized to
(SRi(1),SRi(2),SRi(3),SRi(4) of equation (12)) and a Boolean variable showing whether or not the galaxy
satisfies the redshift and mass requirements of equation (13)), while all other nodes, edges and global
features of the graph are initialized with zeros.

In both cases, we use 10 graphs to train the GNN model, 5 graphs to validate and 5 graphs to test its
behavior. There is no overlapping region between training, validating and testing graphs. The model is
trained with Adam (Kingma and Ba 2015) on a 320 NVIDIA P100 GPU. We start with a 2000-epoch
pre-training phase with a fixed penalty strength λ, followed by a 8000-epoch training with exponentially
increasing λ. Other training parameters are shown in table 2.

We do a coarse hyperparameter search over the learning rate, the penalty factor, and the noise level of the
noisy sigmoid function. The learning rates in both cases are searched from 10−4 to 10−2. The penalty factor
in Case 1 is varied between 10−8 and 10−6, in Case 2 between 10−3 and 10. And the noise level is searched
between 0.1 and 0.4. The sharpness of the noisy sigmoid method is fixed to 20. The dimensionality of the
GNN functions nx, nh and nu is set to 10, while ng is set according to the item features listed above. We
experimented with 20-dimensional features but found no improvements.

5. Results

We report the GNN test scores in tables 3 and 4 in terms of the objective function as well as the adherence
to the constraints. To the latter end, we define the total overtime and unused time, i.e.∆T=

∑
kmax

(0,
∑

i∈Ψk
tik −T) and∆T ′ =

∑
kmax(0,T−

∑
i∈Ψk

tik), and calculate the fraction of such over/unused time

compared to the total available observation time Tall = TK. The result is written as f0
+∆T/Tall

−∆T ′/Tall
. For example,

10+3%
−2% means that the value of the objective function is 10, with 3% overtime and 2% unused time.

5.1. Case 1: balancing predefined classes
The training and test data was derived from a galaxy catalog provided by the PFS galaxy evolution program.
For classes 1–8 in table 1, we use the EL-COSMOS catalog (Saito et al 2020), which is based on the
COSMOS2015 photometric catalog (Laigle et al 2016). Since the area coverage of this catalog is too small for
simulations of multiple PFS pointings, we repeat the central region of the catalog in a 3× 3 tiling pattern, so
that the final extended catalog covers a contiguous area of∼10deg2. The remaining classes are artificially
superposed on the same region so that the number densities are consistent with the expectation. Each galaxy
in the catalog has a label indicating the class it belongs to.

We compare our GNN approach to the currently employed network flow optimization method, which
is based on the fiber-assignment method in Blanton et al (2003). Similar to our approach, it constructs a
graph connecting fibers and galaxies, but then solves a linear min-cost max-flow problem on the graph
with the MIP optimizer GUROBI, given predetermined costs for every galaxy class: f(τ1, . . . , τI) =∑

i cm ι(i ∈ Cm ∧ τi ⩾ Tm), where ι denotes the indicator function. Multi-exposure programs like case 1 can
be implemented by creating a graph with one fiber node per exposure. The network flow optimization
guarantees feasibility but does not permit the adjustment of the class costs to maximize the objective
function. We therefore adopt, as a baseline and a representation of the current state of development, the fixed
costs cm from table 1 which were identified through manual exploration of the linear objective listed above. It
is important to emphasize that these costs they were determined with the same general goal, namely to
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Table 3. Case 1 results in terms of the values of the objective function in equation (11) (minimal completeness across the classes in
table 1) from network flow optimization with preset costs (‘Baseline-LP‘); direct gradient descent of equation (7) (‘GD’); and our GNN
method for 5 independent test fields. The percentages denote the fraction of the full time allocation T that is overallocated (+) or
underallocated (−), averaged over all fibers.

Field ID Baseline-LP GD GNN (Ours)

1 0.773+0.0%
−19.3% 0.824+0.8%

−1.4% 0.877+0.1%
−9.9%

2 0.764+0.0%
−20.1% 0.827+0.8%

−1.6% 0.876+0.1%
−10.2%

3 0.767+0.0%
−20.5% 0.829+0.8%

−1.8% 0.880+0.1%
−10.5%

4 0.768+0.0%
−20.6% 0.828+0.8%

−2.0% 0.870+0.1%
−10.7%

5 0.775+0.0%
−20.7% 0.830+0.8%

−1.9% 0.871+0.1%
−10.8%

Table 4. Case 2 test results in terms of the values of the objective function in equation (12) (i.e. aggregated redshift success rate; the
second objective of equation (13) is fully saturated by design) from three competing strategies for 5 independent test fields. The
percentages denote the fraction of the full time allocation T that is overallocated (+) or underallocated (−), averaged over all fibers.

Field ID Baseline-LP GD GNN (Ours)

1 2184.7+0.0%
−0.0% 2485.6+0.0%

−0.0% 2593.1+1.2%
−0.4%

2 2084.4+0.0%
−0.0% 2404.2+0.0%

−0.0% 2485.6+1.1%
−0.5%

3 2151.7+0.0%
−0.0% 2457.1+0.0%

−0.0% 2544.4+1.1%
−0.4%

4 2295.6+0.0%
−0.0% 2590.4+0.0%

−0.0% 2696.1+0.9%
−0.5%

5 2308.5+0.0%
−0.0% 2623.6+0.0%

−0.0% 2711.9+1.0%
−0.5%

achieve an equitable distribution of completeness across all galaxy classes, but not the specific objective
function in equation (11).

For a more flexible optimization of the objective function, we also solve the problem of equation (11) in
the form of equation (7), i.e. directly forO(105) of tik, by ordinary gradient descent. We use equation (5) to
convert tij to integers at test time. We have tried different types of gradient descent (Adam, momentum), but
the results are very similar.

The results are shown in table 3. In all 5 test fields, our GNN method outperforms the current baseline
and the gradient descent solver despite being trained on fields different from the test fields. The
network-flow fiber assignment provides a good baseline with a minimum completeness of≈76%, but it
leaves≈20% of the time unallocated. This apparent contradiction is not an indication of suboptimal
performance of the method itself. Instead, it suggests that the pre-determined class costs of table 1 are
suboptimal for this specific objective function. The GD method, which like our GNN optimizes equation
(11), improves upon this baseline. But we find that, depending on the initialization, it can require a very large
number of iterations to converge to a (local) minimum, as expected for such a high-dimensional
optimization problem. The GNN benefits from learning a model of what makes galaxies valuable in relation
to the constraints, and it communicates that through message passing on the graph. While the GNNMLPs
have in total O(104) parameters themselves, they encode the strategy of solving equation (7) with galaxy and
fiber configurations as given by the training data and the instrument. As a result, similar galaxies will
generally be evaluated similarly. This generalization leads to an increased completeness of≈88% even
though the solution has not been optimized on the test fields.

With respect to feasibility, unused time is not a concern for case 1. We expected that conflicts between
highly valuable galaxies will prevent full utilization of the time allocation, and have confirmed that in the test
results. For instance, a canonical problem arises from multiple long-integration galaxies being located in the
patrol region of a single fiber. Because of the partial overlap of the patrol regions, some, but not all, of these
conflicts can be solved by utilizing a neighboring fiber. If that cannot be achieved, a fraction of the available
time cannot be used to increase the completeness of the respective class and, in turn, of the objective
function. However, in comparison to Baseline, the GNN approach evidently converts unused time into gains
of the objective, which reveals the suboptimality of having to predetermine the costs for this complex
resource allocation problem. Interestingly, GD does not achieve higher completeness than the GNN despite
utilizing almost all the available time.

Overtime violations are, by design, impossible for the network flow method, and are almost completely
avoided by the GNN strategy. As we detail in section 5.2, a minor overtime violation is acceptable in this case,
but could be avoided entirely by increasing the penalty strength beyond the final value in table 2. The Brute
Force solver has minor overtime allocations, smaller than the unused allocations, consistent with the
asymmetry of the penalty.
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In addition to the highest objective function values, GNN is also the fastest method. For every field, both
Baseline and GD need to be run again, while the runtime of the GNN is less than 1 s once the training is
done. However, even if we include the training time, the GNN is still faster than a single run of the network
flow optimization with GUROBI.

5.2. Case 2: optimizing a general objective function
The training and test data were derived from UniverseMachine simulations (Behroozi et al 2019), which has a
size of 4.0× 4.0 deg2, comprising about 35 000 galaxies in a single PFS field of view. The spectrum
simulation follows the approach in Cranmer et al (2021), which uses a single spectral type of a massive
elliptical galaxy, artificially redshifted, and scaled in amplitude to match the expected performance of PFS for
a given stellar mass. Stellar masses were predicted from UniverseMachine halo masses according to the scaling
relation in Girelli et al (2020). The precision of the redshift estimates was determined by fitting the known
spectrum template to 100 000 such galaxy spectra in the presence a constant sky spectrum and the
corresponding Poisson shot noise. This procedure constitutes a best-case scenario because spectral
misclassification is impossible and catastrophic outliers are rare.

Case 2 again cannot directly be solved with LP techniques because the main aspect of this problem lies in
the determination of the relative importance of the two competing objectives as well as the individual
per-galaxy utilities of objective 1 (the precision of the redshift estimation). We therefore adapt a known
heuristic approach to precondition the problem, so that we can express it as a LP problem. We first randomly
select 5000 galaxies satisfying the redshift and halo mass conditions and label all of these galaxies as class 1, to
be observed with a single exposure. Giving this class infinite costs ensures to saturate equation (13). We then
chose a proposed time allocation τ i for all other galaxies i= 1, . . . ,N, so that it maximizes the expected gain,

τi = argmaxτ∈{0,1,2,...,T}

[
fi(τ)
τ

]
(Dantzig 1957), where f i is defined in equation (12). The same min-cost

max-flow MIP solver we used for case 1 is then run with 1+N classes, where N classes are comprised of only
one galaxy each and specified by their proposed time and expected utility fi(τi). Because the classes are
defined separately for the two objectives, galaxies in class 1 cannot be used for redshift measurement,
necessarily leading to a suboptimal solutions for galaxies that are useful for both objectives. We also run the
brute-force Gradient Descent method for comparison.

The results are shown in table 4. Because the second objective term s is saturated in all cases, we only
show the total redshift success rate of equation (12) as the objective. We can see that the results of the GNN
method are superior to GD and the Baseline method in terms of the objective function. This result
demonstrates that our method is capable of finding effective strategies for allocating resources in this general
test case that combines separable and non-separable objectives.

We note that the GD method is closer to the GNN results than it was in case 1, which we attribute to the
reduced volume of the parameter space due to the shorter program times (Tmax = 4 instead of Tmax = 15).
We also find that the GNN method yields mild levels of feasibility violations. Although we could in principle
avoid such violations by further increasing the penalty factor λ, we allow them here because observations
with PFS will simultaneously allocate about 10%–20% of the fibers as calibration targets. We decided to
ignore this operational complication for this work, but, because the numbers of calibrations measurements
are flexible, we can compensate a small amount of over- or unused time with the calibration allocations.

6. Summary and outlook

Resource allocation problems arise in many application areas but remain challenging, especially if they
involve high-dimensional and discrete allocation spaces and non-linear or non-separable objectives. In this
paper we present a bipartite GNN architecture that learns a strategy for solving general resource allocation
problems. It is based on message passing on a graph formed from nodes representing the items of value and
the allocation constraints, respectively, connected by edges corresponding to all possible allocations. It is
trained to minimize any user-specified objective function, augmented by a penalty for constraint violations,
using instances of the problem—either from historical occurrences or simulations—that should capture all
relevant aspects of the problem at test time.

We apply our GNN method to the target selection problem in astronomy, which, when given a total
observing time budget, amounts to choosing which celestial sources from within a given sky area are to be
observed, and for how long. Specializing on a highly multiplexed instrument, the Prime Focus Spectrograph
for the Subaru Telescope at Maunakea in Hawai‘i, results in the additional complication of having to assign
discrete and identical exposure times to sources observed simultaneously by all 2394 fibers of this instrument.
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We demonstrate that our GNN method finds efficient allocation strategies in two realistic problem
settings with non-linear and non-separable objectives. We compare our results to two direct solvers, one
performing a minimum-cost maximum-flow network optimization with predetermined costs, and the other
directly solves for all possible allocations by gradient descent. Our method yields higher values of the
objective function in all cases for every test field. It formally guarantees feasibility only for infinitely large
penalties, and we recommend to increase the penalty term during training until feasibility is achieved or
feasibility violations are deemed tolerable. The tuning of the feasibility penalty also allows the exploration of
strategies in systems with some amount of slack or surplus, as we expect in the case of PFS.

The development of this GNN method for resource allocations bring two important benefits for future
work. First, the runtime for the GNN solution is much shorter than that of direct solvers, of order 1 s
compared to several hours in some cases. Substantial accelerations by neural MIP solvers have also been
found in Nair et al (2020). In our case, performing the GNN optimization to precondition a traditional MIP
solver should lead to substantially reduced computational costs while maintaining the guaranteed feasibility
of that solver. Either option will render it practically doable to roll out strategy updates over a large number
of problem instances or to assess the probabilities that any item receives some amount of allocation. This
so-called ‘selection function’ is of critical importance for precision analyses in astrophysics and cosmology.

Second, multi-objective problems require the balancing of priorities for different kinds of items (e.g.
galaxies in our case 1), which traditionally have to be established beforehand. If the respective utilities are not
known a priori, as is routinely the case in scientific experiments, the complexity of this task renders it
unlikely that manual exploration of the priorities yield near-optimal results. Our GNN provides a
differentiable architecture, thereby exposing all relevant parameters of the problem to optimization. Similar
to Cranmer et al (2021), we intend to make use of this capability in forthcoming works to train another
neural network to learn the utility of galaxies based on easily observable features instead of assuming that
these utilities are known, as we have done in test case 2.

The permutation invariance and flexible node and edge models of GNNs render them exceptionally well
suited for resource allocation problems. We suspect that is should also work well e.g. for auction strategies
(Huang et al 2008). Other interesting questions beyond the scope of this work relate to the goal of
Explainable AI, for instance: what information is passed between the nodes of the graph; how many
message-passing steps are needed to achieve these results; and what role does the global model play.
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Appendix A. Proof of the theorem

Let V be the set of all vertices and E be the set of all edges, we have a hypergraph G= (V,E). The connectivity
of this graph is represented by the incidence matrix A ∈ R|V|×|E|, where Aij = 1 if and only if edge j is
connected to vertex i, otherwise Aij = 0.

The time allocations tikl between galaxy i and fiber k in exposure l from equation (8) are represented by
vectors El ∈ {0,1}|E| (l= 1, . . . ,T). The jth element of El equals tikl if the jth edge in E connects item node i
and constraint node k. Similarly, tik can be represented by a vector Etot ∈ {0,1,2, . . . ,T}|E|, and the jth
element of Etot equals tik. The target selection problem equation (7) is then written as

argmax
Etot

f(Etot)

A ·Etot ⩽ T1|V|

Etot ∈ {0,1,2, . . . ,T}|E|. (A.1)
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We want to decompose Etot into a set of El that satisfy:

Etot =
T∑

l=1

El

A ·El ⩽ 1|V|

El ∈ {0,1}|E|. (A.2)

Theorem 1. Given a solution Etot to the problem equation (A.1), there exists at least one set {E1, . . . ,ET} satisfying
equation (A.2).

Proof by induction. When T= 1, Etot = E1 and the theorem holds trivially. Assume that the statement is
true for T= S. For T= S+ 1, we have Etot,S+1 which satisfies:

A ·Etot,S+1 ⩽ (S+ 1)1|V|

Etot,S+1 ∈ {0,1,2, . . . ,S+ 1}|E|. (A.3)

If we can find E ∈ {0,1}|E| such that A · (Etot,S+1 −E)⩽ S1|V| and Etot,S+1 −E⩾ 0, the problem is converted
to a T= S problem and we can thus find a subset {E1,…,ES}⊂ {0,1}|E| such that Etot −E=

∑
lEl. Combining

all El and E gives a decomposition of Etot. Thus the theorem is equivalent to the existence of such E.
E is given by the following problem:

A · (Etot,S+1 −E)⩽ S1|V|

Etot,S+1 −E⩾ 0

E ∈ {0,1}|E|, (A.4)

where Etot,S+1 satisfies A ·Etot,S+1 ⩽ (S+ 1)1|V| and Etot,S+1 ∈ {0,1,2, . . . ,S+ 1}|E|.
Let Av be the vth row of A and U= {v|Av ·Etot,S+1 = S+ 1}. For any v ∈ U, we must have Av ·E= 1. The

problem becomes:

AUE= 1|U|

AV/UE⩽ 1|V/U|

Etot,S+1 −E⩾ 0

E ∈ {0,1}|E|. (A.5)

We generalize the problem into a linear system so that E can take any number between 0 and 1:

AUE= 1|U|

AV/UE⩽ 1|V/U|

E⩽ Etot,S+1

0|E| ⩽ E⩽ 1|E|. (A.6)

Therefore, the theorem is equivalent to the existence of integer solutions of equation (A.6). The existence of
such integer solutions is guranteed by the following lemma:

Lemma 1. The solution set of problem equation (A.6), a convex polytope, contains at least one integer point.

Proof. First, we can show that this solution set is not empty because E ′ = 1
S+1Etot,S+1 is obviously a solution.

Now, consider an arbitrary corner of this polytope, E⋆. The corner is determined by |E| linearly independent
equations. Equations come from the bottom two conditions will directly give the value of the corresponding
element in E⋆. The remaining undetermined elements of E⋆ is then determined by the first two conditions,
i.e. by the linear equations defined by A ′, an invertible square submatrix of A. Since the graph is bipartite, A is
totally unimodular. This means that any square submatrix has determinant 1, 0 or−1. Because the submatrix
A ′ is invertible, its determinant can only be ±1. Then by Cramer’s rule, the inverse matrix is also an integral
matrix. Thus the solution to the linear equations, the undetermined elements of E⋆ are integers. Therefore,
any corner of the solution set is an integer point. And because the set is non-empty, there must be at least one
corner E⋆ which is the solution to problem equation (A.5).
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Time complexity

To find such a decomposition, we can find a sequence of El by recursively finding E⋆. Finding E⋆ is no slower
than polynomial time, because we can randomly choose a vector c and maximize c ·E within the polytope.
Since the linear programming problems can be solved in polynomial time, finding E⋆ and the sequence {El}
can also be done in polynomial time.
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