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ABSTRACT 
 

This study explores the balance between data privacy and regulatory compliance in blockchain-
based financial systems, focusing on privacy-enhancing technologies (PETs) such as Zero-
Knowledge Proofs (ZKPs) and multiparty computations (MPCs). Through a comprehensive 
methodology combining literature review, comparative analysis, and empirical testing on the 
Ethereum test network, the research reveals significant trade-offs. Implementing ZKPs increased 
transaction times from 5 seconds to 12 seconds and gas fees from 0.02 ETH to 0.05 ETH, while 
computational load rose by 60%, highlighting the impact on scalability and efficiency. Chi-Square 
tests and regression analysis uncovered notable algorithmic biases, with low-value accounts 
experiencing 15% fewer transaction approvals and small mining pools receiving 20% fewer rewards 
than larger counterparts. Additionally, MPCs, while offering robust privacy, increased 
communication overhead by 35%, posing scalability challenges. The study recommends adopting a 
tiered privacy approach, implementing basic privacy measures for low-sensitivity transactions, and 
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advanced technologies like ZKPs for high-sensitivity transactions while optimizing ZKPs to reduce 
their computational burden and enhance transaction speeds, and integrating artificial intelligence to 
detect and mitigate algorithmic biases in blockchain systems. Future research should also explore 
hybrid privacy solutions that combine the strengths of different PETs, such as ZKPs and MPCs, to 
achieve both robust privacy and high efficiency. Furthermore, investigating quantum-resistant 
cryptographic methods is crucial to safeguarding blockchain systems against emerging threats. 
These insights provide valuable guidance for financial institutions, blockchain developers, and 
policymakers, promoting the development of blockchain-based financial systems that optimize data 
privacy while maintaining system performance and regulatory compliance. 
 

 
Keywords: Blockchain; privacy-enhancing technologies; regulatory compliance; zero-knowledge 

proofs, quantum-resistant cryptography; algorithmic bias. 

  
1. INTRODUCTION 
 
In consideration of the increasing intensity of 
concern surrounding data privacy and security 
issues in the digital age, the trade-off between 
the benefits of blockchain technology and the 
protection of sensitive data has emerged as a 
significant challenge. High-profile incidents like 
the Cambridge Analytica scandal have 
highlighted the potential for the misuse of 
personal data, leading to widespread public 
outcry and a significant erosion of consumer trust 
[1]. In blockchain-based financial systems, 
ensuring data privacy is essential for maintaining 
consumer trust and confidence. As financial 
systems increasingly adopt blockchain, the risk 
of exposing sensitive financial information, 
particularly in decentralized finance (DeFi), 
becomes more pronounced the nature of its 
financial transactions which occur without 
intermediaries, hence, user data is potentially left 
vulnerable to exposure [2]. 
 
The European Union's Markets in Crypto-Assets 
(MiCA) regulation has established a legal 
framework for cryptocurrencies which although is 
crucial for the growth of the industry, is also 
indicative of the importance of consumer 
protection and data privacy [3]. MiCA addresses 
various critical aspects of the crypto market, 
including transparency, market manipulation, and 
fraud, with specific provisions for data privacy, 
acknowledging the critical role of protecting 
personal data in building consumer trust and 
ensuring market integrity. Privacy-enhancing 
technologies (PETs) such as secure multi-party 
computation (SMPC) and homomorphic 
encryption (HE) allow data to be verified and 
processed without revealing the underlying 
information [3,4]. However, financial transactions 
vary widely in terms of sensitivity and privacy 
requirements, hence, developing a taxonomy 
that categorizes transactions based on their 

sensitivity levels can help apply appropriate 
privacy settings for each category. For instance, 
high-sensitivity transactions involving personal or 
financial information may require stricter privacy 
controls compared to low-sensitivity transactions. 
In addition, Albarhi et al. [4] contends that the 
algorithms used in blockchain applications, such 
as smart contracts and automated decision-
making systems can inadvertently perpetuate 
biases present in the underlying data, leading to 
discriminatory outcomes and undermining the 
fairness and integrity of financial systems.  
 
The intersection of blockchain technology and 
data privacy is further complicated by the 
increasing sophistication of cyber threats. Recent 
cyber-attacks highlight the ongoing cybersecurity 
threats and the importance of robust data 
protection measures, revealing the vulnerabilities 
in existing systems and the pressing need for 
advanced privacy-enhancing technologies to 
safeguard sensitive data. Moreover, the specter 
of data breaches and misuse of systems 
complexes the adoption of blockchain technology 
in the financial industry [5]. Barrett et al. [6] 
argues that the misuse of data to influence 
elections and manipulate public opinion eroded 
public trust in technology companies and ignited 
a global debate about data privacy, and the 
integrity of data handling organization. In the 
context of blockchain, the risk of similar breaches 
cannot be ignored, especially given the potential 
value of financial data. Therefore, this paper will 
comprehensively investigate the relationship 
between data privacy and compliance within 
blockchain-based financial systems and develop 
a framework to optimize data protection without 
compromising the core benefits of blockchain 
technology. This study aims achieves the 
following objectives: 
 

1. Examine the feasibility of inherent data 
privacy within blockchain architecture while 
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preserving transparency and immutability, 
exploring the potential of privacy-
enhancing technologies and their practical 
implementation. 

2. Develop a taxonomy of financial 
transactions based on sensitivity levels 
and propose optimal privacy settings for 
each category, considering the trade-offs 
between privacy, security, and regulatory 
compliance. 

3. Analyze the potential for algorithmic bias 
and discrimination in blockchain-based 
financial systems and propose 
mechanisms to ensure fair data usage and 
mitigate discriminatory outcomes. 

4. Evaluate the economic and societal 
implications of different privacy-compliance 
trade-off scenarios, providing insights for 
policymakers and industry stakeholders to 
make informed decisions. 

 

2. LITERATURE REVIEW 
 

According to Onyekachukwu et al. [7], blockchain 
technology has transformed the financial sector, 
leveraging decentralized, immutable, and 
transparent ledgers to provide significant 
opportunities for enhancing the efficiency and 
security of financial transactions. The 
technology’s decentralized nature eliminates the 
need for intermediaries, reducing transaction 
costs and increasing efficiency, thus impacting 
various financial applications, including 
payments, remittances, lending, and securities. 
Rather than traditional payment systems which 
often involving multiple intermediaries which 
translates to delays and higher costs, blockchain 
technology facilitates faster and more secure 
transactions by enabling peer-to-peer 
transactions, significantly reduces these 
inefficiencies [8]. Naderi [9] notes that blockchain 
enhances transaction speed while maintaining 
security and transparency. Also, remittances 
which are critical for many developing economies 
benefit from blockchain’s ability to provide low-
cost, instantaneous cross-border transfers, 
particularly in regions with limited access to 
traditional banking infrastructure. 
 

In addition, Javaid et al. [8] posits that 
decentralized finance (DeFi) platforms, built on 
blockchain, are fast becoming alternatives to 
traditional lending models, offering peer-to-peer 
lending, bypassing intermediaries and potentially 
expanding financial inclusion. Consequently, 
blockchain streamlines the lending process by 
providing transparent and immutable credit 
histories, reducing fraud risk, and enhancing trust 

between lenders and borrowers [10]. Adisa et al. 
[11] argues that blockchain-enabled lending 
platforms can democratize credit access, 
eliminating traditional barriers and fostering a 
more inclusive financial ecosystem. Additionally, 
the use of smart contracts in lending automates 
agreement execution, further increasing 
efficiency and reducing operational risks. 
 
Moreover, studies suggest that the application of 
blockchain in securities trading and management 
represents a significant advancement, 
considering that traditional securities trading 
involves a complex network of intermediaries, 
including brokers, clearinghouses, and 
custodians [8,9,12] In this regard, blockchain can 
simplify this process by providing a single, 
immutable ledger that records all transactions. 
Odeyemi et al [13] contends that blockchain 
enhances transparency and efficiency in 
securities trading, reduces settlement times, and 
lowers fraud risk, while providing real-time 
access to transaction data to improve regulatory 
compliance and market oversight. 
 
Despite these benefits, blockchain’s 
implementation in financial systems faces 
challenges in significant areas such as 
scalability, considering that current blockchain 
networks, such as Bitcoin and Ethereum, 
struggle to process high volumes of transactions 
quickly. Sanka and Cheung [14] asserts that 
addressing scalability issues is crucial for 
blockchain to handle the transaction throughput 
required for large-scale financial applications. 
Solutions like sharding and off-chain transactions 
are being explored to overcome these limitations. 
In addition, interoperability between different 
blockchain networks, constitutes another critical 
challenge, as it is essential for different networks 
must communicate and transact seamlessly for 
blockchain to be widely adopted in the financial 
sector. Abdelmaboud et al. [15] highlights the 
importance of interoperability in creating a 
cohesive blockchain ecosystem capable of 
supporting diverse financial applications, hence 
the need for the development of standardized 
protocols and frameworks. Moreover, the 
regulatory environment surrounding blockchain is 
still evolving, with studies asserting that the lack 
of clear and consistent regulations can hinder 
innovation and investor confidence [16-18]. While 
some entities have embraced blockchain 
technology, others remain cautious, creating a 
complex and fragmented regulatory scope, which 
pose significant barriers to broader blockchain 
adoption in the financial sector. 
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2.1 Blockchain and Data Privacy in 
Financial Systems 

 
The integration of blockchain technology in 
financial systems presents a unique paradox 
between transparency and privacy, as 
blockchain’s foundational principle of 
transparency, characterized by an immutable 
public ledger accessible to all participants, 
inherently conflicts with the need for privacy, 
particularly in financial transactions involving 
sensitive personal information. While 
blockchain’s transparency ensures trust and 
accountability by allowing all participants to verify 
transactions independently [19], the public nature 
of blockchain ledgers poses significant privacy 
risks considering that despite the pseudonymous 
nature of transactions, they can still expose 
sensitive data if linked to an individual’s identity, 
potentially leading to various privacy risks, 
including data exposure, identity theft, and 
discrimination [20] 
 
Data exposure is a primary concern in 
blockchain-based financial systems. As each 
transaction is recorded on a public ledger, any 
observer with sufficient information can trace and 
analyze the transaction history. Feng et al. [21] 
contends that this transparency can be exploited 
to infer sensitive information about individuals 
and organizations, leading to potential breaches 
of privacy. Identity theft constitutes another 
significant risk associated with blockchain’s 
transparency. Once an individual’s identity is 
linked to a blockchain address, all past and 
future transactions associated with that address 
become traceable, which can possibly result in 
identity theft, where malicious actors exploit the 
publicly accessible data for fraudulent activities 
[22]. 
 

2.2 Regulatory Landscape for Blockchain 
and Cryptocurrencies 

 
Globally, regulatory trends for blockchain and 
cryptocurrencies, show a mix of acceptance, 
adaptation, and stringent control. In Europe, the 
introduction of the Markets in Crypto-Assets 
(MiCA) regulation marks a significant step toward 
creating a unified regulatory framework for 
cryptocurrencies. MiCA aims to provide legal 
certainty, enhance consumer and investor 
protection, and ensure market integrity, 
addressing various aspects, including the 
issuance of crypto-assets, operational 
requirements for crypto-asset service providers, 
and measures to prevent market abuse [23]. 

According to Gaviyau and Sibindi [24], the 
Financial Action Task Force (FATF) has issued 
comprehensive recommendations to mitigate the 
risks associated with virtual assets, including 
money laundering and terrorist financing, 
emphasizing the need for parties to apply a risk-
based approach to the supervision and 
regulation of virtual assets and service providers, 
ensuring they are subject to AML and counter-
terrorist financing (CTF) measures, including 
customer due diligence, record-keeping, and 
reporting of suspicious transactions. 
 
In the United States, the regulation of blockchain-
based financial application is characterized by a 
fragmented approach, with various federal and 
state agencies exercising jurisdiction over 
different aspects of blockchain and 
cryptocurrencies [25]. The Securities and 
Exchange Commission (SEC) regulates crypto-
assets deemed to be securities, focusing on 
protecting investors and maintaining fair, orderly, 
and efficient markets [26]. Meanwhile, the 
Commodity Futures Trading Commission 
(CFTC), oversees the trading of cryptocurrency 
derivatives, leading to, can lead to 
inconsistencies and uncertainties for industry 
participants [27]. Custers and Overeater [28] 
affirms that China on the other hand, has taken a 
stringent stance on cryptocurrencies, 
implementing a comprehensive ban on 
cryptocurrency trading and initial coin offerings 
(ICOs), validating the concerns about financial 
stability, capital outflows, and fraud, to curtail 
speculative trading and protect investors, though 
they also stifle innovation in the blockchain 
space. 
 
The General Data Protection Regulation (GDPR) 
in the European Union is a pivotal framework 
addressing these issues, with its provisions on 
data minimization, purpose limitation, and data 
subject rights, posing significant challenges for 
blockchain applications, necessitating innovative 
solutions to ensure compliance without 
undermining the technology’s benefits [29]. MiCA 
also addresses data privacy concerns by 
mandating that crypto-asset service providers 
implement robust data protection measures, 
reflecting the broader trend of integrating data 
privacy considerations into financial regulations 
for blockchain systems [23]. 
 
Akartuna et al. [30] allude that there is 
consensus on the need for regulatory oversight 
to prevent illicit activities and protect consumers. 
However, controversies arise regarding the 
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extent and nature of this oversight. For instance, 
China’s stringent regulations contrast sharply 
with the more permissive environments in 
jurisdictions like Malta and Switzerland, which 
have positioned themselves as crypto-friendly 
hubs [31]. These divergent approaches, highlight 
the ongoing debate about the optimal regulatory 
balance that promotes innovation while 
safeguarding financial stability and security [32-
34]. 
 

2.3 Privacy-Enhancing Technologies 
(PETs) in Blockchain 

 
Privacy-enhancing technologies (PETs) including 
zero-knowledge proofs (ZKPs), homomorphic 
encryption (HE), and secure multi-party 
computation (SMPC) have emerged as critical 
tools in addressing the privacy challenges 
inherent within blockchain system, with each of 
these technologies offering unique advantages in 
combating distinct challenges, particularly 
concerning scalability and computational 
efficiency [35]. Zero-knowledge proofs (ZKPs) 
enable one party to verify the validity of a 
transaction without revealing the underlying data, 
making them especially valuable in maintaining 
privacy [36] while ensuring the public integrity of 
blockchain transactions as exemplified in the 
cryptocurrency Zcash, which utilizes ZKPs to 
facilitate confidential transactions [37]. However, 
despite their strong privacy guarantees, ZKPs 
introduce significant computational overhead, 
which can impact the scalability and efficiency of 
blockchain systems. The complexity of 
implementing ZKPs in high-throughput 
environments raises concerns about the 
practicality of their widespread adoption, 
particularly when balancing the trade-offs 
between privacy and performance [38]. 
 
Homomorphic encryption (HE) is another 
promising technique that allows computations to 
be performed on encrypted data without needing 
to decrypt it, thus preserving data privacy during 
operations, making it highly suitable for secure 
data processing within blockchain systems [39]. 
Loukil et al. [40] points that HE's potential is 
evident in applications such as private smart 
contracts and secure data analytics. However, 
like ZKPs, HE suffers from significant 
computational overhead, which hinders its 
practical application, constituting a major barrier 
to its broader use in blockchain-based financial 
systems [41]. On the other hand, secure multi-
party computation (SMPC) provides a robust 
framework for privacy-preserving computations 

by enabling multiple parties to jointly compute a 
function over their inputs while keeping those 
inputs private, making it relevant for financial 
applications where data privacy is paramount 
[42]. However, the complexity and computational 
demands of SMPC present substantial 
challenges, especially in terms of scalability and 
latency. These issues are evident in projects like 
Enigma, which leverages SMPC to enable 
private computations over encrypted data, but 
still faces difficulties related to performance and 
network efficiency [38]. 
 
Despite the significant advancements in PETs, 
several challenges remain that impede their 
practical application. Scalability is a critical 
concern, as the computational overhead 
associated with ZKPs, HE, and SMPC can 
impede the performance of blockchain networks 
[38,41]. The integration of these technologies 
into existing blockchain protocols is also 
complex, given the lack of standardized 
frameworks for PET implementation [43]. 
Moreover, the balance between privacy and 
usability poses ongoing difficulties, while PETs 
enhance privacy, they often introduce 
complexities that can affect user experience and 
system usability [44]. Ensuring that these privacy 
solutions remain user-friendly and do not 
compromise the accessibility of blockchain 
systems is essential for their widespread 
adoption. 
 

2.4 Algorithmic Bias and Fairness in 
Blockchain 

 
According to Upadhyay [45], blockchain 
technology, while decentralized and transparent, 
is not immune to the biases inherent in the data it 
processes. For instance, in blockchain-based 
lending platforms, algorithms determine 
creditworthiness by analyzing transaction 
histories and other data points. If these datasets 
contain historical biases—such as discrimination 
based on race, gender, or socioeconomic 
status—the resulting algorithms can perpetuate 
these biases, leading to unequal access to credit 
[46]. Similar risks exist in blockchain-based 
insurance platforms, where algorithms assess 
risk and determine premiums, and thus, if the 
data used to train these algorithms include 
biased historical claims data, the models may 
unfairly penalize certain groups [47]. Crandall 
[48] contends that this can result in 
disproportionately high premiums for individuals 
from historically marginalized neighborhoods, 
regardless of their actual risk profiles. 
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Fairness and accountability in blockchain 
systems are essential for addressing these 
biases. Morse et al. [49] states that fairness in 
algorithmic systems can be approached through 
various lenses, including distributive justice, 
procedural fairness, and contextual integrity. 
Achieving fairness in blockchain requires careful 
consideration of the data used to train algorithms 
and the methodologies employed to evaluate 
their performance. Techniques such as fairness-
aware machine learning can mitigate bias by 
adjusting for known disparities in the data [50]. 
Nassar et al. [50] further avers that tansparency 
is crucial for identifying and correcting biases[51]. 
Although blockchain’s inherent transparency can 
aid accountability by providing immutable records 
of all transactions and decisions, yet Wachter et 
al. [52] contends that transparency alone is not 
sufficient, hence understanding the rationale 
behind algorithmic decisions is crucial for 
accountability. Therefore, blockchain systems 
must also incorporate explainability features that 
allow users to comprehend how and why 
decisions are made.  

 
2.5 Economic and Societal Implications 
 
The economic impact of data privacy regulations 
on blockchain-based financial systems can be 
both restrictive and beneficial, as compliance 
with regulations like GDPR often requires 
redesigning blockchain architectures, leading to 
increased costs. Mika and Goudz [53] contends 
that these regulatory requirements can slow 
innovation and increase financial burdens, 
especially for startups. However, enhanced data 
privacy protections can build consumer trust and 
confidence, potentially expanding the user base 
and fostering long-term growth. Akbar et al. [54] 
notes that stronger privacy protections can 
mitigate data breach risks, contributing to the 
overall stability and reliability of blockchain-based 
financial systems. 
 
Consumer trust is closely linked to data privacy 
in blockchain technology. Trust is crucial for the 
adoption and success of blockchain applications, 
particularly in financial systems where sensitive 
information is involved. Blockchain’s 
transparency can enhance or undermine trust, 
depending on how privacy is managed [45]. 
Sedlmeir et al. [55] highlights that while 
blockchain’s transparency allows for independent 
transaction verification, it also raises privacy 
concerns that may deter users. Ensuring robust 
data privacy protections is essential for 
maintaining consumer trust. The relationship 

between consumer trust and data privacy in 
blockchain is complex and dynamic [56]. 
Effective privacy measures can enhance trust by 
protecting users' personal information. Tan and 
Saraniemi [56] argues that privacy assurances 
are key to reducing perceived risks and 
enhancing trust in online transactions. However, 
blockchain's inherent transparency requires 
innovative solutions to balance privacy and 
openness. Privacy-enhancing technologies 
(PETs) like zero-knowledge proofs (ZKPs) and 
homomorphic encryption, play a crucial role in 
achieving this balance by allowing users to verify 
transactions without exposing sensitive data 
[35,38,41]. These technologies can significantly 
enhance trust in blockchain systems, ensuring 
privacy without compromising the ledger's 
integrity. 
 
The societal implications of privacy-enhancing 
technologies in blockchain are significant. PETs 
can transform data management, offering new 
paradigms for privacy. Becher et al. [44] argues 
that differential privacy, another key PET, 
enables large data set analysis without 
compromising individual privacy. These 
technologies empower individuals by giving them 
greater control over their information, enhancing 
autonomy and protecting rights [57]. The 
economic and societal consequences of 
blockchain and data privacy are intertwined. A 
thriving blockchain ecosystem can contribute to 
economic growth, financial inclusion, and 
innovation. However, without adequate data 
protection measures, the risks of financial 
instability, social inequality, and erosion of civil 
liberties increase [58]. A holistic approach is 
necessary to harness blockchain's benefits while 
mitigating its drawbacks, requiring collaboration 
between policymakers, industry stakeholders, 
and civil society to develop effective regulatory 
frameworks, foster innovation, and protect 
individual rights. 

 

3. METHODOLOGY 
 
The study evaluates the feasibility of inherent 
data privacy within blockchain systems, focusing 
on Zero-Knowledge Proofs (ZKPs) and their 
impact on system performance. Utilizing an 
extensive literature review covering key themes: 
blockchain architecture, ZKPs, homomorphic 
encryption, secure multi-party computation 
(MPC), and privacy regulations, a comparative 
analysis was conducted on Bitcoin, Ethereum, 
and Hyperledger to assess how each system 
implements privacy measures. Bitcoin’s 
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Confidential Transactions and Ethereum’s zk-
SNARKs were evaluated for their effectiveness in 
enhancing privacy, with a focus on trade-offs 
related to transaction speed and computational 
complexity. Transactional speed was measured 
using the formula 
 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑆𝑝𝑒𝑒𝑑 =  
∑ 𝑇𝑖  

𝑛
𝑖=1

𝑛
 

 
And gas fees were calculated using: 
 

𝐺𝑎𝑠 𝐹𝑒𝑒 = 𝐺𝑎𝑠 𝑈𝑠𝑒𝑑 ∗ 𝐺𝑎𝑠 𝑃𝑟𝑖𝑐𝑒 
 
The study also included a case study analysis, 
examining real-world implementations (zk-
SNARKs in Ethereum's Metamask and private 
data collections in Hyperledger’s supply chain 
management) to provide practical insights into 
the challenges and outcomes associated with 
deploying privacy technologies. A feasibility 
study was then conducted using the Ethereum 
test network. Smart contracts were deployed to 
simulate transactions with and without ZKPs, 
transaction speed, gas fees, and computational 
load were used as the measuring performanace 
indicators, calculated using: 
 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠 =  
𝑀𝑒𝑡𝑟𝑖𝑐𝑠 𝑤𝑖𝑡ℎ 𝑍𝐾𝑃

𝑀𝑒𝑡𝑟𝑖𝑐𝑠 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑍𝐾𝑃
 

 

The computational load was then calculated 
using: 
 

𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐿𝑜𝑎𝑑 =  ∑ 𝐶𝑖  
𝑛

𝑖=1
 

 

To achieve objective two a taxonomy of financial 
transactions was developed based on sensitivity 
levels and proposing optimal privacy settings, a 
focused methodological approach was used. 
Data was collected from blockchain explorers 
(Etherscan and Blockchain.com) as well as 
financial transaction data from open data portals 
and academic sources. Transactions were 
categorized into low, medium, and high 
sensitivity levels based on different factors 
(transaction value and type). A linear scoring 
system was applied, with sensitivity levels 
assigned values (1 for low, 2 for medium, 3 for 
high) and privacy setting effectiveness scored 
from 1 to 9. The relationship was defined by the 
equation: 
 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑠𝑐𝑜𝑟𝑒 =  3 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝐿𝑒𝑣𝑒𝑙 
 

Literature review and expert insights were 
integral in refining privacy settings to ensure 

alignment with industry standards and regulatory 
requirements. 
 
For Objectives three, the analysis utilized 
transaction data from Bitcoin, Ethereum, and 
Hyperledger, focusing on transaction approval 
rates, mining rewards, and smart contract 
execution costs. The data was categorized by 
variables such as account value, region, mining 
pool size, contract complexity, and user type. A 
Chi-Square test was conducted to assess the 
disparities between observed and expected 
frequencies in each category, identifying 
potential biases. The Chi-Square statistic was 
calculated using the formula  
 

𝑋2 =  
∑(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖

 

 
Where Oi represents the observed frequency and 
Ei the expected frequency.  
This test was applied to each blockchain to 
evaluate algorithmic discrimination in the 
approval rates, rewards distribution, and cost 
allocation. For the regression analysis, 
transaction costs were modeled as the 
dependent variable, with transaction type, 
network congestion level, and user activity type 
as independent variables. The regression 
equation was specified as: 
 

 𝑌 =  𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝜀 
 
Where Y represents the transaction cost, β₀ is 
the intercept, β₁, β₂, and β₃ are coefficients for 
each predictor, and ε is the error term. The 
analysis aimed to quantify the impact of these 
factors on costs across the three platforms, 
revealing significant predictors that suggest 
potential biases. 
 
To achieve objectives 4, data was acquired from 
the World Bank, to represent three privacy-
compliance trade-off scenarios: A (high privacy, 
high compliance cost), B (balanced privacy, 
moderate compliance cost), and C (low privacy, 
low compliance cost). The key variables included 
Privacy Level, Regulatory Compliance Cost (in 
millions), System Performance (Transactions per 
Second), and User Trust Score. Descriptive 
statistics were computed to summarize the 
central tendencies and variability of these 
variables across scenarios. The mean for each 
variable was calculated using the formula: 
 

𝑀𝑒𝑎𝑛 =  
∑ 𝑋

𝑁
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where X represents the individual data points 
and N is the number of data points.  
 
A cost-benefit analysis was performed by 
calculating the benefits as the sum of System 
Performance and User Trust, and the cost-
benefit ratio was derived using the formula: 
 

𝐶𝑜𝑠𝑡 − 𝐵𝑒𝑛𝑒𝑓𝑖𝑡 𝑟𝑎𝑡𝑖𝑜 =  
𝐵𝑒𝑛𝑒𝑓𝑖𝑡

𝑅𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟𝑦 𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 𝐶𝑜𝑠𝑡
 

 
This analysis facilitated the comparison of 
economic efficiency across scenarios. 

 
4. RESULT AND DISCUSSION 
 
Objective 1 examines the feasibility of inherent 
data privacy within blockchain architecture               
while preserving transparency and immutability, 
exploring the potential of privacy-               
enhancing technologies and their practical 
implementation (List 1).  
 

4.1 Comparative Analysis 
 
The comparative analysis (List 2) shows that 
Bitcoin’s Confidential Transactions and 
Ethereum’s zk-SNARKs enhance privacy but 
increase complexity and costs. Hyperledger's 
private data collections offer better scalability in 

permissioned environments, though they lack the 

transparency of public blockchains. 
 

4.2 Case Study Analysis 
 
The case study analysis examined the 
implementation of privacy-enhancing 
technologies in blockchain systems, focusing on 
Bitcoin's Confidential Transactions, Ethereum's 
zk-SNARKs, and Hyperledger's private data 
collections (List 3). Each demonstrated 
enhanced privacy, but with trade-offs in 
complexity, computational costs, and scalability, 
particularly for public blockchains like Bitcoin and 
Ethereum. 
 

4.3 Feasibility Study 
 

Fig. 1 examines the feasibility of inherent data 
privacy in blockchain systems using Zero-
Knowledge Proofs (ZKPs), while preserving 
transparency and immutability. The results (List 
4) show that implementing ZKPs increases 
transaction speed (from 5 to 12 seconds), raises 
gas fees (from 0.02 to 0.05 ETH), and 
significantly heightens computational load. This 
indicates that while ZKPs enhance privacy, they 
introduce substantial performance trade-offs, 
challenging the scalability and efficiency of 
blockchain systems. 

 

List 1. A comprehensive review of existing literature (articles, academic Journal, case studies 
and reports) was conducted to establish a foundational understanding of privacy technologies 

in blockchain systems 
 

Theme Key Findings Challenges Identified Sources 

Blockchain Architecture Various consensus protocols impact 
scalability and privacy integration. 

Scalability, energy 
consumption. 

Ismail & Materwala [59]; 
Bhutta et al. [60] 

Zero-Knowledge Proofs ZKPs enhance privacy by concealing 
transaction details. 

High computational 
complexity. 

Dieye et al. [61]; Konkin & 
Zapechnikov [62] 

Homomorphic Encryption Allows operations on encrypted data. Performance overhead. Fan et al. [63] 

MPC Ensures privacy in multi-party 
environments. 

High communication 
costs. 

Wang & Kogan [64]; Tosh 
et al. [65] 

Privacy Regulations GDPR and other regulations 
challenge blockchain's immutability. 

Compliance vs. 
immutability. 

Truong et al. [66]; 
Hasselgren et al. [67] 

 

List 2. The integration of privacy measures was compared across Bitcoin, Ethereum, and 
Hyperledger 

 

Blockchain Privacy Measures Challenges 

Bitcoin Confidential Transactions (CT), CoinJoin Increased complexity and costs. 

Ethereum zk-SNARKs, zk-Rollups High computational demands, slower transaction speeds. 

Hyperledger Private Data Collections, Channels Limited public transparency, scalability concerns. 
 

List 3. Case studies were analyzed to contextualize the implementation of privacy technologies 
in blockchain systems 

 

Blockchain Case Study Outcomes 

Bitcoin Confidential Transactions (CT) Effective privacy enhancement, but limited by complexity. 

Ethereum zk-SNARKs in Metamask Robust privacy, but challenges in scaling and cost. 

Hyperledger Supply Chain & Healthcare Maintains privacy with controlled transparency, suitable for 
enterprises. 
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List 4. A feasibility study was conducted on the Ethereum test network to empirically evaluate 
ZKP implementation 

 
Metric Without ZKP With ZKP Impact 

Transaction Speed 5 seconds 12 seconds Slower with ZKP. 
Gas Fees 0.02 ETH 0.05 ETH Higher with ZKP. 
Computational Load Low High Increased resource consumption. 

 

 
 

Fig. 1. Feasibility Study: Impacts of ZKPs on Blockchain Performance 
 

4.4 Synthesis of Findings 
 
The findings reveal significant trade-offs           
between privacy and performance,                       
with ZKPs offering robust privacy at the cost of 
transaction speed, fees, and computational          
load. 
 
For research objective 2, the study Develop a 
taxonomy of financial transactions based on 
sensitivity levels and propose optimal privacy 
settings for each category, considering the trade-
offs between privacy, security, and regulatory 

compliance. The first step was to categorize 
financial transactions based on their sensitivity 
levels. The following Table 1 presents this 
taxonomy.  
 

4.5 Proposed Privacy Settings for Each 
Sensitivity Level 

 
The Table 2 summarizes the proposed privacy 
settings for each sensitivity level, reflecting both 
the privacy needs and compliance with 
regulatory requirements. 

 
Table 1. Summary of Key Trade-offs in Implementing Privacy-Enhancing Technologies (ZKPs) 

in Blockchain Systems 
 

Aspect Findings 

Privacy vs. Performance ZKPs enhance privacy but impact efficiency. 
Scalability High computational costs raise concerns. 
Regulatory Compliance Conflicts with GDPR. 
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Table 2. Privacy Concerns Across Varying Sensitivity Levels and Transaction Types in Blockchain Systems 
 

Sensitivity Level Transaction Types Examples Key Privacy Concerns 

Low Payment, Peer-to-Peer Transfer Small purchases, casual transfers Transparency vs. Privacy 

Medium Transfer, Cross-Border Payment, Donation, 
Investment, Lending 

Transfers involving financial institutions, cross-border 
transactions 

Data Obfuscation, Pseudonymization 

High Contract Execution, Asset Exchange, Settlement Corporate contracts, large asset exchanges Full Encryption, Confidentiality 

 
Table 3. Privacy Settings and Validation Across Different Sensitivity Levels in Blockchain Systems 

 
Sensitivity Level Privacy Setting Details Validation & Refinement 

Low Basic Encryption, Transparency Standard encryption (AES-256), minimal data collection Validated by Bernabe et al. [68] and Wang & Kogan [64]; 
Emphasized selective disclosure where needed. 

Medium Pseudonymization, Selective Disclosure Pseudonyms replace personal identifiers; selective data 
visibility for authorized parties 

Supported by Wang & Kogan [64] and Hasselgren et al. [67]; 
Enhanced with Multi-Party Computation (MPC). 

High Full Encryption, ZKPs, Confidentiality Zero-Knowledge Proofs (ZKPs) and advanced encryption for 
full data confidentiality 

Strongly validated by Konkin & Zapechnikov [62] and Bernabe 
et al. [68]; Adaptive privacy as per Ylianttila et al. [69]. 

 

 
 

Fig. 2. Privacy setting effectiveness by sensitivity level 
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Fig. 3. Visual representation of Mapping Privacy settings to sensitivity levels in Blockchain 
Transactions 

 

 
 

Fig. 4. Relationship between the sensitivity levels and privacy settings effectiveness 
 
Fig. 3 and Fig. 4 visually represent the 
relationship between financial transaction 
sensitivity levels and the effectiveness of 
proposed privacy settings within blockchain 
systems. The categories, represented on the x-
axis as low, medium, and high sensitivity levels, 
served as predictors for determining the optimal 
privacy settings that balance privacy, security, 
and regulatory compliance. The effectiveness of 
these privacy settings, shown on the y-axis, 
ranged from basic measures for low sensitivity 
transactions to more advanced techniques for 
high sensitivity ones. For low sensitivity 
transactions, a privacy effectiveness score of 3 

indicates that basic encryption suffices, 
balancing transparency with minimal privacy 
needs. Medium sensitivity transactions, with an 
effectiveness score of 6, suggest that 
pseudonymization and selective disclosure are 
required to enhance privacy while maintaining 
necessary security and compliance. High 
sensitivity transactions achieved a                         
score of 9, indicating that comprehensive  
privacy measures like full encryption and                           
Zero-Knowledge Proofs are necessary to           
protect sensitive data, despite the higher 
demands these measures place on security and 
compliance. 
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Table 4. Chi-square test of bias in bitcoin transaction approval rates 
 

Variable Observed Frequency (O) Expected Frequency (E) (O - E)² / E Chi-Square Contribution 

Low-Value Accounts 85 100 2.25 2.25 
High-Value Accounts 115 100 2.25 2.25 
Underserved Regions 80 105 6.25 6.25 
Well-Served Regions 120 95 6.25 6.25 
Total 400 400 - 17.00 

 
Table 5. Chi-Square test of bias in ethereum mining rewards 

 
Variable Observed Frequency (O) Expected Frequency (E) (O - E)² / E Chi-Square Contribution 

Small Mining Pools 95 110 1.95 1.95 
Large Mining Pools 125 110 1.95 1.95 
Developing Regions 90 120 7.50 7.50 
Developed Regions 130 100 9.00 9.00 
Total 440 440 - 20.40 

 
Table 6. Chi-square test of bias in hyperledger smart contract execution costs 

 
Variable Observed Frequency (O) Expected Frequency (E) (O - E)² / E Chi-Square Contribution 

High Complexity 90 100 1.00 1.00 
Low Complexity 110 100 1.00 1.00 
Individual Users 95 115 3.47 3.47 
Enterprise Users 105 85 4.71 4.71 
Total 400 400 - 10.18 

 
Table 7. Regression analysis of factors influencing transaction costs in blockchain systems 

 
Predictor Variable Bitcoin (β\betaβ) Ethereum (β\betaβ) Hyperledger (β\betaβ) 

Transaction Type 22.00 (p<.001p < .001p<.001) 25.00 (p<.001p < .001p<.001) 23.00 (p<.001p < .001p<.001) 
Network Congestion Level 13.00 (p=.007p = .007p=.007) 15.00 (p=.005p = .005p=.005) 14.00 (p=.006p = .006p=.006) 
User Activity Type 18.00 (p=.002p = .002p=.002) 20.00 (p=.001p = .001p=.001) 19.00 (p=.003p = .003p=.003) 
R2R^2R2 0.58 0.60 0.59 
F-Statistic 11.45 (p<.001p < .001p<.001) 12.34 (p<.001p < .001p<.001) 11.75 (p<.001p < .001p<.001) 
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For objectives 3, the study analyzes the potential 
for algorithmic bias and discrimination in 
blockchain-based financial systems and propose 
mechanisms to ensure fair data usage and 
mitigate discriminatory outcomes. 
 
The Chi-Square test identifies significant biases 
in Bitcoin transaction approvals, particularly 
against low-value accounts and underserved 
regions. This suggests algorithmic                  
discrimination in how transactions are evaluated, 
favoring high-value accounts and well-served 
regions. 
 
The Chi-Square test reveals significant 
disparities in Ethereum mining rewards, with 
smaller pools and those in developing regions 
receiving fewer rewards than expected. This 
indicates potential bias in the reward distribution 

algorithm, favoring larger pools and developed 
regions. 
 
The Chi-Square test for Hyperledger shows a 
bias in smart contract execution costs, with 
individual users and high-complexity contracts 
facing higher costs. This suggests a 
discriminatory pattern in cost allocation, possibly 
disadvantaging certain users. 
 
The regression analysis across Bitcoin, 
Ethereum, and Hyperledger shows that 
transaction type, network congestion level, and 
user activity type significantly influence 
transaction costs. Higher costs are associated 
with more complex transactions, greater network 
congestion, and intensive user activities, 
suggesting potential algorithmic bias in cost 
allocation. 

 

 
 

Fig. 5. Chi-square result for the observed vs expected frequencies for all the three assests 
 

 
 

Fig. 6. Regression analysis result for all the three assests 
 

Table 8. Descriptive statistics for privacy-compliance trade-off scenarios 
 

Scenario Privacy Level 
(Mean) 

Regulatory Compliance Cost 
(Mean, Millions) 

System Performance 
(Mean, TPS) 

User Trust Score 
(Mean) 

A 8.56 12.55 593.47 79.01 

B 5.19 7.02 790.95 58.24 

C 2.20 3.30 1004.87 42.23 
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For research objective 4, the study evaluates the 
economic and societal implications of different 
privacy-compliance trade-off scenarios, providing 
insights for policymakers and industry 
stakeholders to make informed decisions. The 
descriptive statistics for each scenario are 
summarized in Table 8. The key variables 
include Privacy Level, Regulatory Compliance 
Cost (in millions), System Performance 
(Transactions per Second), and User Trust 
Score. 
 
The results indicate that Scenario A offers the 
highest privacy level and regulatory compliance 
costs, with moderate system performance and 
the highest user trust score. Scenario B 
represents a balanced approach, while Scenario 
C emphasizes low privacy with minimal 
compliance costs, leading to the highest system 
performance but the lowest user trust. 
 

4.6 Cost-Benefit Analysis 
 
To assess the economic impact of each 
scenario, a cost-benefit analysis was conducted. 
The benefits were calculated by summing 
System Performance and User Trust scores, and 
a cost-benefit ratio was derived by dividing                 
the benefits by the Regulatory Compliance 
Costs. 
 
As illustrated in Table 9, Scenario C yields the 
highest cost-benefit ratio (422.43) due to its low 
regulatory compliance cost and high system 
performance. However, it also presents the 
lowest user trust score, which may pose risks to 
long-term adoption. Scenario B offers a balanced 
trade-off with a favorable cost-benefit ratio 
(124.40), while Scenario A, despite its high 
privacy levels, shows the lowest cost-benefit ratio 
(54.80). 

Table 9. Cost-benefit analysis of privacy-compliance trade-off scenarios 
 

Scenario Regulatory Compliance Cost (Mean, Millions) Benefit (Mean) Cost-Benefit Ratio 

A 12.55 672.48 54.80 
B 7.02 849.19 124.40 
C 3.30 1047.10 422.43 

 

 
 

Fig. 7. Visual distribution of key metrics (privacy level, regulatory compliance cost, system 
performance, and user trust score) across the three scenarios (A, B, and C). 
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4.7 Discussion 
 

The results and findings of this study provide 
crucial insights into the delicate balance between 
data privacy and compliance in blockchain-based 
financial systems, a balance fundamental to 
preserving the core benefits of blockchain 
technology. The first objective, which examined 
the feasibility of inherent data privacy within 
blockchain architecture, revealed significant 
trade-offs between privacy and performance. The 
implementation of Zero-Knowledge Proofs 
(ZKPs) as a privacy-enhancing technology, for 
instance, was shown to substantially increase 
transaction speeds from 5 seconds to 12 
seconds, gas fees from 0.02 ETH to 0.05 ETH, 
and computational load (Fig. 1). These findings 
align with existing literature emphasizing the 
computational complexity and performance 
overhead associated with ZKPs, as noted by 
Dieye et al. [61] and Konkin and Zapechnikov 
[62]. While these technologies offer robust 
privacy, their impact on scalability and efficiency 
cannot be overlooked, echoing concerns raised 
by Bhutta et al. [60] regarding the challenges of 
integrating privacy into blockchain systems. 
 

Moreover, the study’s comparative analysis 
across Bitcoin, Ethereum, and Hyperledger 
demonstrated that each blockchain platform 
faces unique challenges in balancing privacy and 
transparency. Bitcoin’s use of Confidential 
Transactions (CT) and CoinJoin introduces 
increased complexity and costs, a finding 
consistent with the observations of Ismail and 
Materwala [59]. Similarly, Ethereum’s 
deployment of zk-SNARKs and zk-Rollups, while 
effective in enhancing privacy, results in higher 
computational demands and slower transaction 
speeds, paralleling issues highlighted in the 
literature [62]. Hyperledger’s approach, involving 
private data collections and channels, manages 
to maintain privacy with controlled transparency 
but raises concerns about scalability, as 
discussed by Wang and Kogan [64]. These 
results underscore the inherent tension between 
privacy and performance in blockchain systems, 
a theme consistently emphasized in both 
academic and industry discourse. 
 

The second objective, which involved developing 
a taxonomy of financial transactions based on 
sensitivity levels, further illustrated the complexity 
of achieving optimal privacy settings in 
blockchain systems [65-67]. The proposed 
privacy settings, ranging from basic encryption 
for low-sensitivity transactions to advanced 
measures like ZKPs for high-sensitivity 

transactions, reflect a well-considered approach 
to balancing privacy, security, and regulatory 
compliance (Fig. 2, 3, and 4). These findings are 
strongly supported by existing literature, such as 
the work of Bernabe et al. [68], who advocate for 
selective disclosure and pseudonymization as 
effective strategies for enhancing privacy in 
medium-sensitivity transactions. The validation of 
these settings through comparative analysis 
highlights the practical implications of privacy-
enhancing technologies, reinforcing the 
importance of a tailored approach to privacy in 
financial transactions, as noted by Ylianttila et al. 
[69]. 
 

In addressing the third objective, the study 
identified significant algorithmic biases in 
blockchain-based financial systems, evidenced 
by the Chi-Square tests of bias in Bitcoin 
transaction approval rates, Ethereum mining 
rewards, and Hyperledger smart contract 
execution costs (Tables 4, 5, and 6). These 
biases, which disproportionately affect low-value 
accounts, underserved regions, and smaller 
mining pools, raise critical concerns about 
fairness and accountability in blockchain 
systems. The findings are consistent with the 
literature, which highlights the risk of 
perpetuating existing biases through algorithmic 
decision-making in blockchain, as discussed by 
Upadhyay [45] and Crandall [48]. The regression 
analysis further corroborates these concerns, 
showing that transaction type, network 
congestion level, and user activity type 
significantly influence transaction costs across all 
three blockchain platforms, suggesting a 
potential for algorithmic bias in cost allocation 
(Table 7). These results underscore the need for 
mechanisms to ensure fair data usage and 
mitigate discriminatory outcomes, a challenge 
that remains a focal point in the ongoing 
discourse on blockchain ethics and governance 
[49,50]. 
 

The study also emphasized the importance of 
multiparty computations (MPC) in enhancing 
privacy in blockchain systems. Although MPC 
offers significant potential for privacy-preserving 
computations, its scalability and communication 
overhead present substantial challenges. 
Expanding the use of MPC, alongside more 
surveys to understand its application in 
blockchain, could offer additional insights into 
addressing privacy concerns without 
compromising performance. 
 

The study’s final objective evaluated the 
economic and societal implications of privacy-
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compliance trade-offs, providing a detailed 
understanding of the impact of these trade-offs 
on system performance, user trust, and 
regulatory compliance. The descriptive statistics 
for the three scenarios (A, B, and C) revealed 
that Scenario A, which prioritized high privacy 
levels, resulted in the highest regulatory 
compliance costs and the lowest system 
performance but achieved the highest user trust 
score (Table 5). This finding is aligned with Mika 
and Goudz [53], who argue that stronger privacy 
protections, while costly, can enhance consumer 
trust and contribute to the stability of blockchain-
based financial systems. Conversely, Scenario 
C, which emphasized low privacy and minimal 
compliance costs, led to the highest system 
performance but the lowest user trust, 
highlighting the risks associated with prioritizing 
performance over privacy. The cost-benefit 
analysis (Table 6) further illustrated the trade-offs 
between privacy and compliance, with Scenario 
C yielding the highest cost-benefit ratio (422.43) 
due to its low compliance costs, albeit at the 
expense of long-term trust and adoption. These 
findings are consistent with the literature, which 
asserts the importance of balancing privacy with 
performance and compliance to ensure the 
sustainability of blockchain systems [54,56,58]. 
 

5. CONCLUSION AND RECOMMENDA-
TION 

 
This study avers the complex balance required 
between data privacy, system performance, and 
regulatory compliance in blockchain-based 
financial systems. The findings indicate that while 
privacy-enhancing technologies like Zero-
Knowledge Proofs (ZKPs) offer substantial 
privacy benefits, they also introduce significant 
trade-offs, particularly in transaction speed, gas 
fees, and computational load. This highlights the 
need for a carefully considered approach that 
takes into account the specific requirements of 
different financial transactions. Moreover, the 
study emphasizes the importance of addressing 
algorithmic biases and ensuring that regulatory 
frameworks support innovation without 
compromising data privacy or system integrity. 
Given the complexities identified, it is 
recommended that: 
 

1. Financial institutions and blockchain 
developers should adopt a tiered privacy 
approach, implementing basic privacy 
measures for low-sensitivity transactions 
and advanced technologies like ZKPs for 

high-sensitivity transactions, to optimize 
both performance and compliance. 

2. Practitioners should optimize ZKPs to 
reduce their computational burden and 
enhance transaction speeds, and 
integrating artificial intelligence to detect 
and mitigate algorithmic biases in 
blockchain systems 

3. Regulators and policymakers need to 
establish clear guidelines that balance the 
need for data privacy with the operational 
realities of blockchain systems, ensuring 
that compliance requirements do not stifle 
innovation. 

4. A concerted effort should be made to 
address and mitigate algorithmic biases in 
blockchain systems, with ongoing 
monitoring and adjustments to ensure 
fairness in transaction approvals, mining 
rewards, and smart contract execution 
costs across different user groups and 
regions. 

 

6. FUTURE RESEARCH 
 
Future research should explore optimizing Zero-
Knowledge Proofs for efficiency, combining 
privacy-enhancing technologies for better 
scalability, and using AI to detect and mitigate 
algorithmic biases in blockchain systems. Also, 
studies should focus on improving the efficiency 
of ZKPs and other privacy-enhancing 
technologies to reduce their computational 
overhead, thus making them more viable for 
widespread adoption without compromising 
system performance. Future research should 
also explore hybrid privacy solutions that 
combine the strengths of different PETs, such as 
ZKPs and MPCs, to achieve both robust privacy 
and high efficiency. Furthermore, investigating 
quantum-resistant cryptographic methods is 
crucial to safeguarding blockchain systems 
against emerging threats. 
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