Graph Embedding Deep Learning Guides Microbial Biomarkers' Identification

Zhu, Qiang and Jiang, Xingpeng and Zhu, Qing and Pan, Min and He, Tingting (2019) Graph Embedding Deep Learning Guides Microbial Biomarkers' Identification. Frontiers in Genetics, 10. ISSN 1664-8021

[thumbnail of pubmed-zip/versions/2/package-entries/fgene-10-01182.pdf] Text
pubmed-zip/versions/2/package-entries/fgene-10-01182.pdf - Published Version

Download (1MB)

Abstract

The microbiome-wide association studies are to figure out the relationship between microorganisms and humans, with the goal of discovering relevant biomarkers to guide disease diagnosis. However, the microbiome data is complex, with high noise and dimensions. Traditional machine learning methods are limited by the models' representation ability and cannot learn complex patterns from the data. Recently, deep learning has been widely applied to fields ranging from text processing to image recognition due to its efficient flexibility and high capacity. But the deep learning models must be trained with enough data in order to achieve good performance, which is impractical in reality. In addition, deep learning is considered as black box and hard to interpret. These factors make deep learning not widely used in microbiome-wide association studies. In this work, we construct a sparse microbial interaction network and embed this graph into deep model to alleviate the risk of overfitting and improve the performance. Further, we explore a Graph Embedding Deep Feedforward Network (GEDFN) to conduct feature selection and guide meaningful microbial markers' identification. Based on the experimental results, we verify the feasibility of combining the microbial graph model with the deep learning model, and demonstrate the feasibility of applying deep learning and feature selection on microbial data. Our main contributions are: firstly, we utilize different methods to construct a variety of microbial interaction networks and combine the network via graph embedding deep learning. Secondly, we introduce a feature selection method based on graph embedding and validate the biological meaning of microbial markers. The code is available at https://github.com/MicroAVA/GEDFN.git.

Item Type: Article
Subjects: Open Library Press > Medical Science
Depositing User: Unnamed user with email support@openlibrarypress.com
Date Deposited: 30 Jan 2023 10:01
Last Modified: 09 Jul 2024 07:21
URI: http://info.euro-archives.com/id/eprint/380

Actions (login required)

View Item
View Item